1.如圖,在三棱柱ABC-A1B1C1中,平面ABC⊥平面AA1B1B,四邊形AA1B1B是矩形,且AB=1,AC=2,BC=$\sqrt{5}$.
(1)求證:AA1⊥平面ABC;
(2)若直線BC1與平面ABC所成角的正弦值為$\frac{2}{3}$,求二面角A1-BC1-B1的余弦值.

分析 (1)推導出AA1⊥AB,由此能證明AA1⊥平面ABC.
(2)以A為原點建立空間直角坐標系A-xyz,利用向量法能求出二面角A1-BC1-B1的余弦值.

解答 證明:(1)∵三棱柱ABC-A1B1C1中,四邊形AA1B1B是矩形,
∴AA1⊥AB,
∵平面ABC⊥平面AA1B1B,且AA1垂直于這兩個平面的交線AB,
∴AA1⊥平面ABC.
解:(2)由(1)知AA1⊥AB,AA1⊥AC,
∵AB=1,AC=2,BC=$\sqrt{5}$,∴AB2+AC2=BC2,∴AB⊥AC,
如圖,以A為原點建立空間直角坐標系A-xyz,
由(1)知CC1⊥平面ABC,
∴直線BC1與平面ABC所成角的大小即為∠C1BC的大小,
由已知得tan$∠{C}_{1}BC=\frac{2}{\sqrt{5}}$,
∴CC1=2,則C1(2,0,2),B(0,1,0),B1(0,1,2),A1(0,0,2),
$\overrightarrow{B{A}_{1}}$=(0,-1,2),$\overrightarrow{B{C}_{1}}$=(2,-1,2),
設平面A1BC1的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{B{A}_{1}}=-y+2z=0}\\{\overrightarrow{n}•\overrightarrow{B{C}_{1}}=2x-y+2z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(0,2,1),
同理求得平面BB1C1的法向量$\overrightarrow{m}$=(1,2,0),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4}{5}$,
由圖知二面角A1-BC1-B1的平面角為銳角,
∴二面角A1-BC1-B1的余弦值為$\frac{4}{5}$.

點評 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖,圓A的半徑為1,且A點的坐標為(0,1),B為圓上的動點,角α的始邊為射線AO,終邊為射線AB,過點B作x軸的垂線,垂足為C,將BC表示成α的函數(shù)f(α),則y=f(α)在[0,2π]的在圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)若直線l過點P且與圓心C的距離為1,求直線l的方程.
(2)設直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知$\overrightarrow a=({1,2,3}),\overrightarrow b=({-1,1,x})$,且$\overrightarrow a⊥\overrightarrow b$,則x的值為( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設變量x,y滿足約束條件$\left\{\begin{array}{l}x+y-4≥0\\ x-y≤0\\ y≤3\end{array}\right.$,則z=3x+y的最大值為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.過點P(1,3)的動直線與拋物線y=x2交于A,B兩點,在A,B兩點處的切線分別為l1、l2,若l1和l2交于點Q,則圓x2+(y-2)2=4上的點與動點Q距離的最小值為$\sqrt{5}$-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知直線(6m2+3m-3)x+(m2+m)y-4m+1=0與直線x-2y+6=0的夾角為arctan3,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設函數(shù)f(x)=sin(ωx+φ)+$\sqrt{3}$cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為π,且f(-x)=f(x),則( 。
A.f(x)在$({0,\frac{π}{2}})$單調(diào)遞減B.f(x)在$({\frac{π}{2},π})$單調(diào)遞減
C.f(x)在$({0,\frac{π}{2}})$單調(diào)遞增D.f(x)在(0,π)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.四棱柱ABCD-A1B1C1D1中,∠A1AB=∠A1AD=∠DAB=60°,A1A=AB=AD,則CC1與BD所成角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習冊答案