【題目】如圖,已知分別是邊長為12的正三角形, 四邊形為直角梯形, 的重心, 中點, 平面, 為線段上靠近點的三等分點.

(Ⅰ)求證: 平面;

(Ⅱ)若二面角的余弦值為試求異面直線所成角的余弦值.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】試題分析:延長交推導(dǎo)出,又中點,所以,所以,從而證明平面

為原點, 軸, 軸建立空間直角坐標(biāo)系,利用向量法能求出異面直線所成角的余弦值

解析:(Ⅰ)解:在延長交,因為點的重心

所以中點,,

所以,所以;

中點,所以,

所以,所以四點共面

平面, 平面

所以平面

(Ⅱ)由題意, 平面所以,平面平面,且交線為

因為,所以平面,

又四邊形為直角梯形 , ,所以所以平面

因為, ,所以平面平面

分別是邊長為12的正三角形,

故以為原點, 軸, , 軸建立空間直角坐標(biāo)系

設(shè),, , , , , ,

因為

所以, ,

設(shè)平面的法向量,,

平面的法向量

所以二面角的余弦值 ,

,

直線所成角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為.

(1)若拋物線的焦點到準(zhǔn)線的距離為4,直線,求直線截拋物線所得的弦長;

(2)過點的直線交拋物線兩點,過點作拋物線的切線,兩切線相交于點,若分別表示直線與直線的斜率,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了了解2018年當(dāng)?shù)鼐用窬W(wǎng)購消費情況,隨機抽取了100人,對其2018年全年網(wǎng)購消費金額(單位:千元)進(jìn)行了統(tǒng)計,所統(tǒng)計的金額均在區(qū)間內(nèi),并按,…,6組,制成如圖所示的頻率分布直方圖.

(1)求圖中的值;

(2)若將全年網(wǎng)購消費金額在20千元及以上者稱為網(wǎng)購迷.結(jié)合圖表數(shù)據(jù),補全列聯(lián)表,并判斷是否有的把握認(rèn)為樣本數(shù)據(jù)中的網(wǎng)購迷與性別有關(guān)系?說明理由;

合計

網(wǎng)購迷

20

非網(wǎng)購迷

45

合計

下面的臨界值表僅供參考:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

附: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地4個蔬菜大棚頂部,陽光照在一棵棵茁壯生長的蔬菜上,這些采用水培、無土栽培方式種植的各類蔬菜,成為該地區(qū)居民爭相購買的對象,過去50周的資料顯示,該地周光照量小時都在30以上,其中不足50的周數(shù)大約5周,不低于50且不超過70的周數(shù)大約有35周,超過70的大約有10周,根據(jù)統(tǒng)計某種改良黃瓜每個蔬菜大棚增加量百斤與每個蔬菜大棚使用農(nóng)夫1號液體肥料千克之間對應(yīng)數(shù)據(jù)為如圖所示的折線圖.

(1)依據(jù)數(shù)據(jù)的折線圖,用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計如果每個蔬菜大棚使用農(nóng)夫1號肥料10千克,則這種改良黃瓜每個蔬菜大鵬增加量是多少斤?

(2)因蔬菜大棚對光照要求較大,某光照控制儀商家為應(yīng)對惡劣天氣對光照的影響,為該基地提供了部分光照控制儀,該商家希望安裝的光照控制儀盡可能運行,但每周光照控制儀最多可運行臺數(shù)受周光照量限制,并有如下關(guān)系:

周光照量單位:小時

30<X<50

光照控制儀最多可運行臺數(shù)

3

2

1

若某臺光照控制儀運行,則該臺光照儀周利潤為4000元;若某臺光照儀未運行,則該臺光照儀周虧損500元,欲使商家周總利潤的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺?

附:回歸方程系數(shù)公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點在傾斜角為的直線上,以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的方程為.

(1)寫出的參數(shù)方程及的直角坐標(biāo)方程;

(2)設(shè)相交于兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A{x|2≤x≤5},B{x|m1≤x≤2m1}

(1)A∪BA,求實數(shù)m的取值范圍;

(2)當(dāng)x∈Z時,求A的非空真子集的個數(shù);

(3)當(dāng)x∈R時,若A∩B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線的焦點F在直線上。

(Ⅰ)求拋物線C的方程。

(Ⅱ)過點做互相垂直的兩條直線與曲線C交于A,B兩點,與曲線C交于E,F兩點,線段AB、EF的中點分別為M、N,求證:直線MN過定點P,并求出定點P的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,的平分線,且,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點M為棱AB的中點,AB=2,AD=BAD=90°

求證:ADBC;

求異面直線BCMD所成角的余弦值;

(Ⅲ)求直線CD與平面ABD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案