已知{an}是等差數(shù)列,公差d≠0,且a1,a3,a13成等比數(shù)列,Sn是{an}的前n項(xiàng)和.
(1)求證:S1,S3,S9成等比數(shù)列;
(2)設(shè)數(shù)列bn=
nanSn
.是否存在正整數(shù)m,使得n>m時,bn>1.99恒成立?若存在,求出m的最小值;若不存在,請說明理由.
分析:(1)根據(jù){an}是等差數(shù)列,公差d≠0,且a1,a3,a13成等比數(shù)列,可得d=2a1(d≠0⇒a1≠0),進(jìn)而可證S1,S3,S9成等比數(shù)列;
(2)根據(jù)(1)可表示出數(shù)列bn=
nan
Sn
. 利用,bn>1.99可知對于正整數(shù)m≥100時,均滿足題目條件,從而可解.
解答:證明:(1)由已知得,(a1+2d)2=a1(a1+12d)⇒d=2a1(d≠0⇒a1≠0),
由此,S1=a1,S3=9a1,S9=81a1⇒S32=S1•S9,命題得證.
(2)∵d=2a1an=(2n-1)a1,⇒Sn=n2a1bn=
nan
Sn
=2-
1
n

假設(shè)存在正整數(shù)m滿足條件,即使得當(dāng)n>m時,2-
1
n
>1.99
,解得n>100.∴對于正整數(shù)m≥100時,均滿足題目條件,故m的最小值為100.
點(diǎn)評:本題以等差數(shù)列為載體,綜合考查等差數(shù)列與等比數(shù)列,關(guān)鍵是正確利用通項(xiàng)公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案