9.在公差不為零的等差數(shù)列{an}中,2a3-a72+2a11=0,數(shù)列{bn}是等比數(shù)列,且a7=b7,則log2(b5b9)的值為(  )
A.2B.4C.8D.1

分析 利用等差數(shù)列與等比數(shù)列的性質(zhì)、對數(shù)的運算性質(zhì)即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d≠0,∵2a3-a72+2a11=0,
∴4a7-a72=0,解得a7=4.
∴b7=4.
∴l(xiāng)og2(b5b9)=$lo{g}_{2}_{7}^{2}$=$lo{g}_{2}{2}^{4}$=4.
故選:B.

點評 本題考查了等差數(shù)列與等比數(shù)列的性質(zhì)、對數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=x2+lgx-3的一個零點所在區(qū)間為(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},1)$C.$(1,\frac{3}{2})$D.$(\frac{3}{2},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)$f(x)=\frac{1}{3}{x^3}-x+m$的極大值為1,則函數(shù)f(x)的極小值為( 。
A.$-\frac{1}{3}$B.-1C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平面直角坐標(biāo)系中,若直線y=x與直線$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.,(t$是參數(shù),0≤θ<π)垂直,則θ=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=2|x+1|-|x-1|.
(1)畫出函數(shù)f(x)的圖象;
(2)解不等式|f(x)|>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在($\frac{y}{\sqrt{x}}-\frac{x}{\sqrt{y}}$)16的二項展開式的17個項中,整式的個數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},則A∩B為( 。
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.焦點在x軸上的橢圓C:$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1,過右焦點作垂直于x軸的直線交橢圓與A,B兩點,且|AB|=1,則該橢圓的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{15}}{4}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知(a+3b)n展開式中,各項系數(shù)的和與各項二項式系數(shù)的和之比為64,則n=6.

查看答案和解析>>

同步練習(xí)冊答案