直線 y=x+1與橢圓+=1相交于A、B兩點,則|AB|=( )
A.
B.
C.
D.
【答案】分析:把直線 y=x+1 代入橢圓+=1 化簡,利用根與系數(shù)的關(guān)系、弦長公式求出|AB|的值.
解答:解:把直線 y=x+1 代入橢圓+=1 化簡可得 5x2+8x-8=0,∴x1+x2=,x1•x2=
∴|AB|=×= =,
故選B.
點評:本題考查直線和圓錐曲線的位置關(guān)系,點到直線的距離公式,弦長公式的應(yīng)用,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)
如圖,四邊形OABC為矩形,點A、C的坐標(biāo)分別為(a+1,0)(a>1)、(0,1),點D在OA上,坐標(biāo)為(a,0),橢圓C分別以O(shè)D、OC為長、短半軸,CD是橢圓在矩形內(nèi)部的橢圓。阎本l:y=-x+m與橢圓弧相切,且與AD相交于點E.
(Ⅰ)當(dāng)m=2時,求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)圓M在矩形內(nèi)部,且與l和線段EA都相切,若直線l將矩形OABC分成面積相等的兩部分,求圓M面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點D在邊OA上,滿足OD=a.分別以O(shè)D、OC為長、短半軸的橢圓在矩形及其內(nèi)部的部分為橢圓弧CD.直線l:y=-x+b與橢圓弧相切,與OA交于點E.
(1)求證:b2-a2=1;
(2)設(shè)直線l將矩形OABC分成面積相等的兩部分,求直線l的方程;
(3)在(2)的條件下,設(shè)圓M在矩形及其內(nèi)部,且與l和線段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州市高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題


如圖,四邊形OABC為矩形,點A、C的坐標(biāo)分別為(a+1,0)(a>1)、(0,1),點D在OA上,坐標(biāo)為(a,0),橢圓C分別以O(shè)D、OC為長、短半軸,CD是橢圓在矩形內(nèi)部的橢圓弧.已知直線l:y=-x+m與橢圓弧相切,且與AD相交于點E.
(Ⅰ)當(dāng)m=2時,求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)圓M在矩形內(nèi)部,且與l和線段EA都相切,若直線l將矩形OABC分成面積相等的兩部分,求圓M面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年浙江省溫州市瑞安中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點D在邊OA上,滿足OD=a.分別以O(shè)D、OC為長、短半軸的橢圓在矩形及其內(nèi)部的部分為橢圓弧CD.直線l:y=-x+b與橢圓弧相切,與OA交于點E.
(1)求證:b2-a2=1;
(2)設(shè)直線l將矩形OABC分成面積相等的兩部分,求直線l的方程;
(3)在(2)的條件下,設(shè)圓M在矩形及其內(nèi)部,且與l和線段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年浙江省溫州市瑞安中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且OC=1,OA=a+1(a>1),點D在邊OA上,滿足OD=a.分別以O(shè)D、OC為長、短半軸的橢圓在矩形及其內(nèi)部的部分為橢圓弧CD.直線l:y=-x+b與橢圓弧相切,與OA交于點E.
(1)求證:b2-a2=1;
(2)設(shè)直線l將矩形OABC分成面積相等的兩部分,求直線l的方程;
(3)在(2)的條件下,設(shè)圓M在矩形及其內(nèi)部,且與l和線段EA都相切,求面積最大的圓M的方程.

查看答案和解析>>

同步練習(xí)冊答案