【題目】已知,,其中,,且函數(shù)處取得最大值.

1)求的最小值,并求出此時函數(shù)的解析式和最小正周期;

2)在(1)的條件下,先將的圖像上的所有點向右平移個單位,再把所得圖像上所有點的橫坐標伸長為原來的2(縱坐標不變),然后將所得圖像上所有的點向下平移個單位,得到函數(shù)的圖像.若在區(qū)間上,方程有兩個不相等的實數(shù)根,求實數(shù)a的取值范圍;

3)在(1)的條件下,已知點P是函數(shù)圖像上的任意一點,點Q為函數(shù)圖像上的一點,點,且滿足,求的解集.

【答案】1的最小值為1,,,(23)原不等式的解集為

【解析】

1)先將化成正弦型,然后利用處取得最大值求出,然后即可得到的解析式和周期

2)先根據(jù)圖象的變換得到,然后畫出在區(qū)間上的圖象,條件轉(zhuǎn)化為的圖象與直線有兩個交點即可

3)利用坐標的對應(yīng)關(guān)系式,求出的函數(shù)的關(guān)系式,進一步利用三角不等式的應(yīng)用求出結(jié)果.

1)因為,

所以

因為處取得最大值.

所以,即

的最小值為1

此時,

2)將的圖像上的所有的點向右平移個單位得到的函數(shù)為,再把所得圖像上所有的點的橫坐標伸長為原來的2(縱坐標不變)得到的函數(shù)為,然后將所得圖像上所有的點向下平移個單位,得到函數(shù)

在區(qū)間上的圖象為:

方程有兩個不相等的實數(shù)根等價于的圖象

與直線有兩個交點

所以,解得

3)設(shè)

因為點,且滿足

所以,所以

因為點為函數(shù)圖像上的一點

所以

因為,所以

所以

所以

所以原不等式的解集為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:

①如果一條線段的中點在一個平面內(nèi),那么它的兩個端點也在這個平面內(nèi);

②兩組對邊分別相等的四邊形是平行四邊形;

③兩組對邊分別平行的四邊形是平行四邊形;

④若一個四邊形有三條邊在同一個平面內(nèi),則第四條邊也在這個平面內(nèi);

⑤點在平面外,點和平面內(nèi)的任意一條直線都不共面.

其中所有正確說法的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校數(shù)學(xué)學(xué)院為了對2018年錄取的大一新生有針對性地進行教學(xué).從大一新生中隨機抽取40名,對他們在2018年高考的數(shù)學(xué)成績進行調(diào)查,統(tǒng)計發(fā)現(xiàn)40名新生的數(shù)學(xué)分數(shù)分布在內(nèi).當時,其頻率.

(1)求的值;

(2)請在答題卡中畫出這40名新生高考數(shù)學(xué)分數(shù)的頻率分布直方圖,并估計這40名新生的高考數(shù)學(xué)分數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表).

(3)若高考數(shù)學(xué)分數(shù)不低于120分的為優(yōu)秀,低于120分的為不優(yōu)秀,則按高考成績優(yōu)秀與否從這40名新生中用分層抽樣的方法抽取4名學(xué)生,再從這4名學(xué)生中隨機抽取2名,求這2名學(xué)生的高考成績均為優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若曲線上分別存在點,使得是以原點為直角頂點的直角三角形,AB交y軸于C,且則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著中國經(jīng)濟的加速騰飛,現(xiàn)在手有余錢的中國家庭數(shù)量越來越多,在房價居高不下股市動蕩不定的形勢下,為了讓自己的財富不縮水,很多家庭選擇了投資理財.為了了解居民購買理財產(chǎn)品的情況,理財公司抽樣調(diào)查了該市201810戶家庭的年收入和年購買理財產(chǎn)品支出的情況,統(tǒng)計資料如下表:

年收入x(萬元)

20

40

40

60

60

60

70

70

80

100

年理財產(chǎn)品支出y(萬元)

9

14

16

20

21

19

18

21

22

23

1)由該樣本的散點圖可知yx具有線性相關(guān)關(guān)系,請求出回歸方程;(求時利用的準確值,的最終結(jié)果精確到0.01

2)若某家庭年收入為120萬元,預(yù)測某年購買理財產(chǎn)品的支出.(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1若曲線處的切線方程為,求實數(shù)的值;

2設(shè),若對任意兩個不等的正數(shù),,都有恒成立,求實數(shù)的取值范圍;

3若在上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:

一次購物款(單位:元)

顧客人數(shù)

統(tǒng)計結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀念品.

(Ⅰ)試確定 的值,并估計每日應(yīng)準備紀念品的數(shù)量;

(Ⅱ)現(xiàn)有人前去該商場購物,求獲得紀念品的數(shù)量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為D的函數(shù)fx),若存在區(qū)間[m,n]D,同時滿足下列條件:①fx)在[m,n]上是單調(diào)的;②當定義域是[m,n]時,fx)的值域也是[m,n],則稱[m,n]為該函數(shù)的和諧區(qū)間”.下列函數(shù)存在和諧區(qū)間的有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b,c為實數(shù),fx=x+a)(x2+bx+c),gx=ax+1)(cx2+bx+1).記集合S={x|fx=0x∈R},T={x|gx=0x∈R}.若{S},{T}分別為集合ST 的元素個數(shù),則下列結(jié)論不可能的是( )

A.{S}=1{T}=0B.{S}=1{T}=1C.{S}=2{T}=2D.{S}=2{T}=3

查看答案和解析>>

同步練習(xí)冊答案