已知向量
a
=(sinx,cosx)
,
b
=(sinx,sinx)
,
c
=(-1,0)

(1)若x=
π
3
,求向量
a
、
c
的夾角θ;
(2)若x∈[-
8
,
π
4
]
,函數(shù)f(x)=λ
a
b
的最大值為
1
2
,求實(shí)數(shù)λ的值.
分析:(1)當(dāng)x=
π
3
時(shí),求出向量
a
、
c
,利用數(shù)量積的坐標(biāo)運(yùn)算求出向量
a
c
,從而求出向量
a
c
的夾角θ;(2)向量
a
=(sinx,cosx)
,
b
=(sinx,sinx)
,代入函數(shù)f(x)=λ
a
b
,利用三角函數(shù)的誘導(dǎo)公式進(jìn)行化簡(jiǎn),轉(zhuǎn)化為三角函數(shù)在定區(qū)間上的最值,即可求得結(jié)果.
解答:解:(1)當(dāng)x=
π
3
時(shí),
a
=(
3
2
1
2
)
,
所以cosθ=
a
c
|a
|•|
c
|
=
-
3
2
1×1
=-
3
2

因而θ=
6
;
(2)f(x)=λ(sin2x+sinxcosx)=
λ
2
(1-cos2x+sin2x)
,f(x)=
λ
2
(1+
2
sin(2x-
π
4
))
,
因?yàn)?span id="mqtzgi1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">x∈[-
8
π
4
],
所以2x-
π
4
∈[-
π
2
π
4
]
,
當(dāng)λ>0時(shí),fmax(x)=
λ
2
(1+1)=
1
2
,即λ=
1
2

當(dāng)λ<0時(shí),fmax(x)=
λ
2
(1-
2
)=
1
2
,即λ=-1-
2

所以λ=
1
2
或λ=-1-
2
點(diǎn)評(píng):此題是個(gè)中檔題.考查向量的數(shù)量積的坐標(biāo)運(yùn)算以及向量的夾角,和三角函數(shù)的誘導(dǎo)公式和三角函數(shù)在定區(qū)間上的最值等基礎(chǔ)知識(shí),同時(shí)也考查了學(xué)生靈活應(yīng)用知識(shí)分析解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,
3
)
,
b
=(1,cosθ)
,θ∈(-
π
2
,
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表達(dá)式.
(2)用“五點(diǎn)作圖法”畫出函數(shù)f(x)在一個(gè)周期上的圖象.
(3)寫出f(x)在[-π,π]上的單調(diào)遞減區(qū)間.
(4)設(shè)關(guān)于x的方程f(x)=m在x∈[-π,π]上的根為x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,則sin2θ+cos2θ的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
,
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此結(jié)論求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五點(diǎn)法”作出函數(shù)y=f(x)在長度為一個(gè)周期的閉區(qū)間的圖象.
②求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
③求函數(shù)f(x)的最大值,并求出取得最大值時(shí)自變量x的取值集合
④函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?
⑤當(dāng)x∈[0,π],求函數(shù)y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作圖
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案