已知F
1、F
2是橢圓C:
+=1(a>b>0)的兩個焦點,P為橢圓C上一點,且
⊥.若△PF
1F
2的面積為9,則b=
.
分析:利用△PF
1F
2的面積=
b2•tan=b2=9求解,能得到b的值.
解答:解:由題意知△PF
1F
2的面積=
b2•tan=b2=9,
∴b=3,
故答案為3.
點評:主要考查橢圓的定義、基本性質(zhì)和平面向量的知識.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1,F(xiàn)
2是橢圓
+=1(a>b>0)的兩個焦點,若在橢圓上存在一點P,使∠F
1PF
2=120°,則橢圓離心率的范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1、F
2是橢圓
+=1(a>b>0)的兩個焦點,若橢圓上存在點P使得∠F
1PF
2=120°,求橢圓離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1、F
2是橢圓的兩個焦點.△F
1AB為等邊三角形,A,B是橢圓上兩點且AB過F
2,則橢圓離心率是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知 F
1、F
2是橢圓
+
=1(a>b>0)的兩個焦點,橢圓上存在一點P,使得
S△F1PF2=b2,則該橢圓的離心率的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1,F(xiàn)
2是橢圓
+y2=1的兩個焦點,點P是橢圓上一個動點,那么
|+|的最小值是( 。
查看答案和解析>>