(不等式選做題)不等式a2-3a≤|x+3|+|x-1|對任意實數(shù)x恒成立,實數(shù)a的取值范圍為
[-1,4]
[-1,4]
分析:令f(x)=|x+3|+|x-1|,依題意,a2-3a≤f(x)min,由絕對值不等式可知f(x)min=4,從而解不等式a2-3a≤4即可求得實數(shù)a的取值范圍.
解答:解:令f(x)=|x+3|+|x-1|,
∵不等式a2-3a≤|x+3|+|x-1|對任意實數(shù)x恒成立,
∴a2-3a≤f(x)min,
又f(x)=|x+3|+|x-1|≥|x+3-(x-1)|=4,即f(x)min=4,
∴a2-3a≤4,
解得-1≤a≤4.
∴實數(shù)a的取值范圍為[-1,4].
故答案為:[-1,4].
點評:本題考查絕對值不等式的解法,考查函數(shù)恒成立問題,求得f(x)=|x+3|+|x-1|的最小值是關鍵,考查轉化思想與解不等式的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
 


B.(幾何證明選做題)如圖,直線PC與圓O相切于點C,割線PAB經(jīng)過圓心O,
弦CD⊥AB于點E,PC=4,PB=8,則CE=
 

C.(坐標系與參數(shù)方程選做題)在極坐標系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
π
4
)=2
2
的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|2x-1|<3的解集為
(-1,2)
(-1,2)

B、(選修4-1幾何證明選講) 如圖所示,AC和AB分別是⊙O的切線,且OC=3,AB=4,延長AO到D點,則△ABC的面積是
192
25
192
25

C.(坐標系與參數(shù)方程選做題)參數(shù)方程
x=cosα
y=1+sinα
(α為參數(shù))化成普通方程為
x2+(y-1)2=1
x2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•陜西)(不等式選做題)
 設a,b∈R,|a-b|>2,則關于實數(shù)x的不等式|x-a|+|x-b|>2的解集是
R
R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(不等式選做題)不等式|
x+1
x-1
|≥1
的解集是
(-∞,0]
(-∞,0]

B.(幾何證明選做題) 如圖,以AB=4為直徑的圓與△ABC的兩邊分別交于E,F(xiàn)兩點,∠ACB=60°,則EF=
2
2

C.(坐標系與參數(shù)方程選做題) 在極坐標中,已知點P為方程ρ(cosθ+sinθ)=1所表示的曲線上一動點,Q(2,
π
3
),則|PQ|的最小值為
6
2
6
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選做題:(考生注意:請在下列三題中任選一題作答,如果多做,則按所做第一題評分)
A.(不等式選做題)不等式
x+5
(x-1)2
≥2
的解集是
[-
1
2
,1)∪(1,3]
[-
1
2
,1)∪(1,3]

B.(幾何證明選做題) 如圖,⊙O的直徑AB=6cm,P是延長線上的一點,過點P作⊙O的切線,切點為C,連接AC,若∠CAP=30°,則PC=
3
3
3
3

C.(坐標系與參數(shù)方程選做題)已知直線x+2y-4=0與
x=2-3cosθ
y=1+3sinθ
(θ為參數(shù))相交于A、B兩點,則|AB|=
6
6

查看答案和解析>>

同步練習冊答案