【題目】【2016高考山東文數(shù)】已知橢圓C:(a>b>0)的長軸長為4,焦距為2.
(I)求橢圓C的方程;
(Ⅱ)過動(dòng)點(diǎn)M(0,m)(m>0)的直線交x軸與點(diǎn)N,交C于點(diǎn)A,P(P在第一象限),且M是線段PN的中點(diǎn).過點(diǎn)P作x軸的垂線交C于另一點(diǎn)Q,延長線QM交C于點(diǎn)B.
(i)設(shè)直線PM、QM的斜率分別為k、k',證明為定值.
(ii)求直線AB的斜率的最小值.
【答案】(Ⅰ) .(Ⅱ)(i)見解析;(ii)直線AB 的斜率的最小值為 .
【解析】
試題分析:(Ⅰ)分別計(jì)算即得.
(Ⅱ)(i)設(shè),
利用對稱點(diǎn)可得
得到直線PM的斜率,直線QM的斜率,即可證得.
(ii)設(shè),分別將直線PA的方程,直線QB的方程與橢圓方程
聯(lián)立,
應(yīng)用一元二次方程根與系數(shù)的關(guān)系得到、及用表示的式子,進(jìn)一步應(yīng)用基本不等式即得.
試題解析:(Ⅰ)設(shè)橢圓的半焦距為c,
由題意知,
所以,
所以橢圓C的方程為.
(Ⅱ)(i)設(shè),
由,可得
所以 直線PM的斜率 ,
直線QM的斜率.
此時(shí),所以為定值.
(ii)設(shè),
直線PA的方程為,
直線QB的方程為.
聯(lián)立 ,
整理得.
由可得 ,
所以,
同理.
所以,
,
所以
由,可知,
所以 ,等號(hào)當(dāng)且僅當(dāng)時(shí)取得.
此時(shí),即,符號(hào)題意.
所以直線AB 的斜率的最小值為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】百子回歸圖是由1,2,3…,100無重復(fù)排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡史,如:中央四位“19 99 12 20”標(biāo)示澳門回歸日期,最后一行中間兩位“23 50”標(biāo)示澳門面積,…,同時(shí)它也是十階幻方,其每行10個(gè)數(shù)之和,每列10個(gè)數(shù)之和,每條對角線10個(gè)數(shù)之和均相等,則這個(gè)和為.
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
在如圖所示的多面體中,四邊形和都為矩形。
(Ⅰ)若,證明:直線平面;
(Ⅱ)設(shè), 分別是線段, 的中點(diǎn),在線段上是否存在一點(diǎn),使直線平面?請證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,問是否存在實(shí)數(shù)a,使得經(jīng)過點(diǎn)(1,a)能夠作出該曲線的兩條切線?若存在求出實(shí)數(shù)a的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和,且是2與的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在銳角△ABC中,a,b,c為角A,B,C所對的邊,且(b﹣2c)cosA=a﹣2acos2 .
(1)求角A的值;
(2)若a= ,則求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1+sin2x,sinx﹣cosx), =(1,sinx+cosx),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值及取得最大值相應(yīng)的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究學(xué)生在考試時(shí)做解答題的情況,老師從甲、乙兩個(gè)班級(jí)里各隨機(jī)抽取了五份答卷并對解答題第16題(滿分13分)的得分進(jìn)行統(tǒng)計(jì),得到對應(yīng)的甲、乙兩組數(shù)據(jù),其莖葉圖如圖所示,其中x,y∈{0,1,2,3},已知甲組數(shù)據(jù)的中位數(shù)比乙組數(shù)據(jù)的平均數(shù)多 ,則x+y的值為( )
A.5
B.4
C.3
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn),,離心率,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長軸端點(diǎn)),的延長線于橢圓交于點(diǎn),的延長線于橢圓交于點(diǎn),求面積的最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com