已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)的一點(diǎn),過(guò)點(diǎn)P的圓O的最短弦在直線(xiàn)l1上,直線(xiàn)l2的方程為bx-ay=r2,那么( 。
A、l1∥l2且l2與圓O相交
B、l1⊥l2且l2與圓O相切
C、l1∥l2且l2與圓O相離
D、l1⊥l2且l2與圓O相離
考點(diǎn):直線(xiàn)與圓的位置關(guān)系
專(zhuān)題:直線(xiàn)與圓
分析:用點(diǎn)斜式求得直線(xiàn)l1的方程,與直線(xiàn)l2的方程的斜率對(duì)比可得l1⊥l2,利用點(diǎn)到直線(xiàn)的距離公式求得圓心到直線(xiàn)l2的距離大于半徑r,從而得到圓和直線(xiàn)l相離.推出選項(xiàng).
解答: 解:由題意可得a2+b2<r2,OM⊥m.
∵KOP=
b
a
,∴l(xiāng)1的斜率k1=-
a
b

故直線(xiàn)l1的方程為 y-b=-
a
b
(x-a),即 ax+by-(a2+b2)=0.
又直線(xiàn)l2的方程為bx-ay=r2,k=
b
a
,故l1⊥l2,
圓心到直線(xiàn)l2的距離為
|-r2|
a2+b2
r2
r
=r,故圓和直線(xiàn)l2相離.
故選:D.
點(diǎn)評(píng):本題考查點(diǎn)和圓、直線(xiàn)和圓的位置關(guān)系,點(diǎn)到直線(xiàn)的距離公式,得到圓心到直線(xiàn)l的距離大于半徑 r,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,則“a+
1
a
≥2”是“a>0”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下命題中:
①p∨q為假命題,則p與q均為假命題;
②對(duì)具有線(xiàn)性相關(guān)關(guān)系的變量x,y,有一組觀(guān)測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,8),其回歸直線(xiàn)方程是y=
1
3
x+a,且x1+x2+x3+…+x8=2(y1+y2+y3+…+y8)=6,則實(shí)數(shù)a=
1
4
;
③對(duì)于分類(lèi)變量x與y,它們的隨機(jī)變量X2的觀(guān)測(cè)值X2來(lái)說(shuō),X2越小,“x與y有關(guān)聯(lián)”的把握程度越大;
④已知
x-1
2-x
≥0,則函數(shù)f(x)=2 x+
4
x
的最小值為16.
其中真命題個(gè)數(shù)為( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x∈N,x≤4},B={x|x∈N,x>1},則A∩B等于( 。
A、{1,2,3,4}
B、{2,3}
C、{2,3,4}
D、{x|1<x≤4,x∈R}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,sinA=
1
3
,角A的對(duì)邊長(zhǎng)度為2,則外接圓半徑是(  )
A、3
B、6
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=4sin(2x+
π
3
)(x∈R),其中下列命題錯(cuò)誤的是( 。
A、y=f(x)的表達(dá)式可改為y=4cos(2x-
π
6
B、y=f(x)的圖象關(guān)于直線(xiàn)x=
12
對(duì)稱(chēng)
C、由f(x1)=f(x2)=0,可得x1-x2必是π的整數(shù)倍
D、要得到函數(shù)y=4cos2x可將函數(shù)y=f(x)的圖象左移
π
12
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6本不同的書(shū)分給甲、乙、丙三人,每人兩本,不同的分法種數(shù)是( 。
A、
C
2
6
C
2
4
B、
C
2
6
C
2
4
C
2
2
A
3
3
C、6
A
3
3
D、
C
3
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,真命題的是( 。
A、x=1是x-1=
x-1
的必要不充分條件
B、a-b>0是a3-b3>0的充分不必要條件
C、x=2kπ-
π
4
(k∈Z)是(sinx)′=(cosx)′的充要條件
D、ab>1是a>1且b>1的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(
π
4
-x)=-
1
3
,且0<x<
π
2
,求sin(
π
4
+x)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案