18.某工廠在兩年內(nèi)生產(chǎn)產(chǎn)值的月增長率都是a,則第二年某月的生產(chǎn)產(chǎn)值與第一年相應(yīng)月相比增長了(1+a)12-1.

分析 根據(jù)條件分別求出二年某月的生產(chǎn)產(chǎn)值,進(jìn)行求解即可.

解答 解:不妨設(shè)第一年1月份的生產(chǎn)產(chǎn)值為b,則2月份的生產(chǎn)產(chǎn)值是b(1+a),3月份的生產(chǎn)產(chǎn)值是b(1+a)2,依此類推,到第二年1月份就是第一年1月份后的第12個月,故第二年1月份的生產(chǎn)產(chǎn)值是b(1+a)12
故第二年某月的生產(chǎn)產(chǎn)值與第一年相應(yīng)月相比增長了$\frac{b(1+a)^{12}-b}$=(1+a)12-1.
故答案為:(1+a)12-1

點評 本題主要考查數(shù)列的應(yīng)用問題,根據(jù)條件建立方函數(shù)關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,則f[f(-4)]=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若雙曲線$\frac{x^2}{a^2}-{y^2}=1({a>0})$的一個焦點為(2,0),則a為( 。
A.$\sqrt{5}$B.$\sqrt{3}$C.5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,已知AB=3,BC=4,AC=$\sqrt{13}$.
(1)求角B的大。
(2)若D是BC的中點,求中線AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下面各組函數(shù)中為相同函數(shù)的是( 。
A.$f(x)=\sqrt{{{(x-1)}^2}},g(x)=x-1$B.f(x)=x0,g(x)=1
C.$f(x)={3^x},g(x)={(\frac{1}{3})^{-x}}$D.$f(x)=x-1,g(x)=\frac{{{x^2}-1}}{x+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=loga(1-x)+loga(3+x)(0<a<1)
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為-4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2-(a+1)x+1(a∈R)
(1)若關(guān)于x的不等式f(x)>0的解集為R,求實數(shù)a的取值范圍;
(2)若關(guān)于x的不等式f(x)≤0的解集為P,集合Q={x|0≤x≤1},若P∩Q=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在平面直角坐標(biāo)系xOy中,以點(1,0)為圓心且與直線mx-y-2m-1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為( 。
A.(x-1)2+y2=1B.(x-1)2+y2=4C.(x-1)2+y2=2D.(x-1)2+y2=$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某學(xué)校為調(diào)查高三年學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有16人.

(Ⅰ)試問在抽取的學(xué)生中,男、女生各有多少人?
(Ⅱ)在上述80名學(xué)生中,從身高在170~175cm之間的學(xué)生中按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當(dāng)旗手,求3人中恰好有一名女生的概率.

查看答案和解析>>

同步練習(xí)冊答案