(2012•泉州模擬)甲、乙兩同學(xué)5次綜合測評的成績?nèi)缜o葉圖所示.
9 8 8 3 3 7
2 1 0 9 9
老師在計(jì)算甲、乙兩人平均分時(shí),發(fā)現(xiàn)乙同學(xué)成績的一個(gè)數(shù)字無法看清.若從{0,1,2,…,9}隨機(jī)取一個(gè)數(shù)字代替,則乙的平均成績超過甲的平均成績的概率為( 。
分析:計(jì)算甲、乙的平均分,建立不等式,求出滿足題意的數(shù)字,即可求得概率.
解答:解:甲的平均分為
88+89+90+91+92
5
=90
設(shè)●為x,則乙的平均分為
83+83+87+90+x+99
5

83+83+87+90+x+99
5
>90
,則x>8,即x=9
∴從{0,1,2,…,9}隨機(jī)取一個(gè)數(shù)字代替,則乙的平均成績超過甲的平均成績的概率為
1
10

故選A.
點(diǎn)評:本題考查概率的計(jì)算,考查莖葉圖,考查計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)請寫出fn(x)的表達(dá)式(不需證明);
(Ⅱ)設(shè)fn(x)的極小值點(diǎn)為Pn(xn,yn),求yn;
(Ⅲ)設(shè)gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,試求a-b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)下列函數(shù)中,既是偶函數(shù),且在區(qū)間(0,+∞)內(nèi)是單調(diào)遞增的函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},則A∩B為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)設(shè)函數(shù)f(x)=ax2+lnx.
(Ⅰ)當(dāng)a=-1時(shí),求函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-
12
的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).若a=1,試問:在區(qū)間[1,10]上是否存在k(k<100)個(gè)正數(shù)x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)設(shè)函數(shù)y=f(x)的定義域?yàn)镈,若對于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,則稱點(diǎn)(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究并利用函數(shù)f(x)=x3-3x2-sin(πx)的對稱中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=( 。

查看答案和解析>>

同步練習(xí)冊答案