12、關(guān)于“二分法”求方程的近似解,說法正確的有
(4)

(1)“二分法”求方程的近似解一定可將y=f(x)在[a,b]內(nèi)的所有零點(diǎn)得到;
(2)“二分法”求方程的近似解有可能得不到y(tǒng)=f(x)在[a,b]內(nèi)的零點(diǎn);
(3)應(yīng)用“二分法”求方程的近似解,y=f(x)在[a,b]內(nèi)有可能無零點(diǎn);
(4)“二分法”求方程的近似解可能得到f(x)=0在[a,b]內(nèi)的精確解;
分析:把二分法的定義理解透徹,利用二分法的定義就可以判斷出①②③是錯(cuò)的.
解答:解:因?yàn)槎址ǖ亩x是:對(duì)于在區(qū)間[a,b]上連續(xù)不斷且f(a).f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)的零點(diǎn)所在區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到函數(shù)零點(diǎn)近似值的方法.
所以在計(jì)算過程中,當(dāng)區(qū)間分得越來越小的時(shí)候,計(jì)算也越來越麻煩,所以我們不可能無限制的計(jì)算下去,故不一定將y=f(x)在[a,b]內(nèi)的所有零點(diǎn)得到即①錯(cuò),
有可能得不到y(tǒng)=f(x)在[a,b]內(nèi)的零點(diǎn),即②錯(cuò).
因?yàn)槎址ǖ亩x已經(jīng)聲明一定有零點(diǎn),故③錯(cuò).
因?yàn)橛枚址ㄇ罅泓c(diǎn)時(shí),是取區(qū)間中點(diǎn),當(dāng)區(qū)間中點(diǎn)對(duì)應(yīng)的函數(shù)值等于0時(shí),那么這個(gè)區(qū)間中點(diǎn)就是零點(diǎn),所以“二分法”求方程的近似解可能得到f(x)=0在[a,b]內(nèi)的精確解;此時(shí)精確解必是某一次的區(qū)間中點(diǎn),故④對(duì).
故答案為 ④.
點(diǎn)評(píng):二分法適用于①函數(shù)y=f(x)在區(qū)間[a,b]上連續(xù)不斷,②f(a).f(b)<0,滿足這兩個(gè)條件,才能用二分法求方程的近似解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、關(guān)于“二分法”求方程的近似解,說法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教B版高中數(shù)學(xué)必修一2.4二分法練習(xí)卷(二)(解析版) 題型:選擇題

下列關(guān)于二分法的敘述,正確的是(   )

A.用二分法可以求所有函數(shù)零點(diǎn)的近似值

B.用二分法求方程近似解時(shí),可以精確到小數(shù)點(diǎn)后任一數(shù)字

C.二分法無規(guī)律可尋,無法在計(jì)算機(jī)上進(jìn)行

D.二分法只用于求方程的近似解

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)一輪精品復(fù)習(xí)學(xué)案:2.6 函數(shù)應(yīng)用(解析版) 題型:選擇題

關(guān)于“二分法”求方程的近似解,說法正確的是( )
A.“二分法”求方程的近似解一定可將y=f(x)在[a,b]內(nèi)的所有零點(diǎn)得到;
B.“二分法”求方程的近似解有可能得不到y(tǒng)=f(x)在[a,b]內(nèi)的零點(diǎn);
C.應(yīng)用“二分法”求方程的近似解,y=f(x)在[a,b]內(nèi)有可能無零點(diǎn);
D.“二分法”求方程的近似解可能得到f(x)=0在[a,b]內(nèi)的精確解;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)生物鐘適應(yīng)訓(xùn)練(03)(解析版) 題型:解答題

關(guān)于“二分法”求方程的近似解,說法正確的有    
(1)“二分法”求方程的近似解一定可將y=f(x)在[a,b]內(nèi)的所有零點(diǎn)得到;
(2)“二分法”求方程的近似解有可能得不到y(tǒng)=f(x)在[a,b]內(nèi)的零點(diǎn);
(3)應(yīng)用“二分法”求方程的近似解,y=f(x)在[a,b]內(nèi)有可能無零點(diǎn);
(4)“二分法”求方程的近似解可能得到f(x)=0在[a,b]內(nèi)的精確解;

查看答案和解析>>

同步練習(xí)冊(cè)答案