已知函數(shù)f(x)=數(shù)學(xué)公式+b,(0<a<1,b∈R)是奇函數(shù)
(1)求實(shí)數(shù)b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)當(dāng)x∈(0,+∞)時(shí),求函數(shù)y=f(x)+數(shù)學(xué)公式的值域.

解:(1)∵定義域?yàn)镽,
∴f(0)=0,∴b=-

(2)是單調(diào)遞增函數(shù).
∵定義域?yàn)镽,∴任取x1,x2∈R,x1<x2,
=
∵0<a<1,∴ax1>ax2,ax2-ax1<0,(ax1+1)(ax2+1)>0
,∴<0,f(x1)<f(x2
∴f(x)=,(0<a<1)是單調(diào)遞增函數(shù)

(3)y=g(t)=t+
當(dāng)≤a<1時(shí),y=g(t)在單調(diào)遞減,
值域:
當(dāng)時(shí),y=g(t)=t+,
當(dāng)且僅當(dāng)t=時(shí),ymin=2,
值域:
分析:(1)因?yàn)楹瘮?shù)f(x)=+b,(0<a<1,b∈R)是奇函數(shù),利用函數(shù)的定義域?yàn)镽時(shí),奇函數(shù)在0處有定義則f(0)=0即可解的b的值;
(2)由題意利用函數(shù)的單調(diào)性的定義加以判斷;
(3)由題意先求出函數(shù)y=f(x)+的解析式,利用“對(duì)勾”函數(shù)的單調(diào)性求出定義域下的函數(shù)值域.
點(diǎn)評(píng):此題考查了奇函數(shù)的性質(zhì),函數(shù)的單調(diào)性的定義,還考查了“對(duì)勾”函數(shù)的單調(diào)性及已知函數(shù)的定義域求解函數(shù)的值域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案