橢圓的離心率為,且經(jīng)過點(diǎn)過坐標(biāo)原點(diǎn)的直線均不在坐標(biāo)軸上,與橢圓M交于A、C兩點(diǎn),直線與橢圓M交于B、D兩點(diǎn)
(1)求橢圓M的方程;
(2)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值

(1);(2)詳見解析;(3)最小值為

解析試題分析:(1)依題意有,再加上,解此方程組即可得的值,從而得故橢圓 的方程(2)由于四邊形ABCD是平行四邊形,所以ABCD的對(duì)角線AC和BD的中點(diǎn)重合
利用(1)所得橢圓方程,聯(lián)立方程組消去得:,顯然點(diǎn)A、C的橫坐標(biāo)是這個(gè)方程的兩個(gè)根,由此可得線段的中點(diǎn)為 同理可得線段的中點(diǎn)為,由于中點(diǎn)重合,所以解得,(舍)這說明都過原點(diǎn)即相交于原點(diǎn)(3)由于對(duì)角線過原點(diǎn)且該四邊形為菱形,所以其面積為由方程組易得點(diǎn)A的坐標(biāo)(用表示),從而得(用表示);同理可得(由于,故仍可用表示)這樣就可將表示為的函數(shù),從而求得其最小值
試題解析:(1)依題意有,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/aa/3/dxvna3.png" style="vertical-align:middle;" />,所以得
故橢圓的方程為                                    3分
(2)依題意,點(diǎn)滿足
所以是方程的兩個(gè)根

所以線段的中點(diǎn)為 
同理,所以線段的中點(diǎn)為         5分
因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/69/0/1hcaq1.png" style="vertical-align:middle;" />是平行四邊形,所以
解得,(舍)
即平行四邊形的對(duì)角線相交于原點(diǎn)                7分
(3)點(diǎn)滿足
所以是方程的兩個(gè)根,即

同理,                     9分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/09/6/1amsm2.png" style="vertical-align:middle;" />,所以,其中
從而菱形的面積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:+=1(a>b>0)的焦距為4,且過點(diǎn)P(,).
(1)求橢圓C的方程;
(2)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點(diǎn).過點(diǎn)Q作x軸的垂線,垂足為E.取點(diǎn)A(0,2),連接AE,過點(diǎn)A作AE的垂線交x軸于點(diǎn)D.點(diǎn)G是點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn),作直線QG,問這樣作出的直線QG是否與橢圓C一定有唯一的公共點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上且過點(diǎn)P,離心率是.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l過點(diǎn)E (-1,0)且與橢圓C交于AB兩點(diǎn),若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

己知⊙O:x2+y2=6,P為⊙O上動(dòng)點(diǎn),過P作PM⊥x軸于M,N為PM上一點(diǎn),且
(1)求點(diǎn)N的軌跡C的方程;
(2)若A(2,1),B(3,0),過B的直線與曲線C相交于D、E兩點(diǎn),則是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

P(x0,y0)(x0≠±a)是雙曲線E:-=1(a>0,b>0)上一點(diǎn),M,N分別是雙曲線E的左,右頂點(diǎn),直線PM,PN的斜率之積為.
(1)求雙曲線的離心率.
(2)過雙曲線E的右焦點(diǎn)且斜率為1的直線交雙曲線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),C為雙曲線上一點(diǎn),滿足+,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中心在原點(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(-3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線l與雙曲線C相交于兩個(gè)不同的點(diǎn)M, N,且線段MA的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線Cy2=2px(p>0)的焦點(diǎn)為F,拋物線C與直線l1y=-x的一個(gè)交點(diǎn)的橫坐標(biāo)為8.
(1)求拋物線C的方程;
(2)不過原點(diǎn)的直線l2l1垂直,且與拋物線交于不同的兩點(diǎn)A、B,若線段AB的中點(diǎn)為P,且|OP|=|PB|,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的左焦點(diǎn)為,右焦點(diǎn)為,過的直線交橢圓于兩點(diǎn), 的周長(zhǎng)為8,且面積最大時(shí),為正三角形.

(1)求橢圓的方程;
(2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn),證明:點(diǎn)在以為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,點(diǎn)P(0,-1)是橢圓C1=1(a>b>0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2x2y2=4的直徑.l1l2是過點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.

(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時(shí)直線l1的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案