設(shè)α、β、γ為兩兩不重合的平面,l、m、n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中真命題的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
【答案】分析:由空間中面面平面關(guān)系的判定方法,線面平等的判定方法及線面平行的性質(zhì)定理,我們逐一對(duì)四個(gè)答案進(jìn)行分析,即可得到答案.
解答:解:若α⊥γ,β⊥γ,則α與β可能平行也可能相交,故①錯(cuò)誤;
由于m,n不一定相交,故α∥β不一定成立,故②錯(cuò)誤;
由面面平行的性質(zhì)定理,易得③正確;
由線面平行的性質(zhì)定理,我們易得④正確;
故選B
點(diǎn)評(píng):在判斷空間線面的關(guān)系,熟練掌握線線、線面、面面平行(或垂直)的判定及性質(zhì)定理是解決此類問題的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若α∥β,l?α,則l∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中命題正確的是
②④
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)α、β、γ為兩兩不重合的平面,l、m、n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若m?α,n?α,m∥β,n∥β,則α∥β;
②若α∥β,l?α,則l∥β;
③若α∩β=l,β∩γ=m,γ∩α=n,l∥m,則 m∥n;
④若α⊥γ,β⊥γ,則α∥β;
則其中所有正確命題的序號(hào)是
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中正確命題是
③④
③④
 (填寫序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a,b,c為兩兩不相等的實(shí)數(shù),求證:a2+b2+c2>ab+bc+ca;
(2)設(shè)a,b,c∈(0,+∞),且a+b+c=1,求證(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

同步練習(xí)冊(cè)答案