15.點(diǎn)A∈α,B∈α,C∈α,則平面ABC與平面α的交點(diǎn)有無數(shù)個(gè).

分析 由已知得平面ABC與平面α重合,由此得到平面ABC與平面α的交點(diǎn)有無數(shù)個(gè).

解答 解:∵點(diǎn)A∈α,B∈α,C∈α,
∴平面ABC與平面α重合,
∴平面ABC與平面α的交點(diǎn)有無數(shù)個(gè).
故答案為:無數(shù)個(gè).

點(diǎn)評(píng) 本題考查兩個(gè)平南的交點(diǎn)個(gè)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平面的基本性質(zhì)及推論的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.求值:$\frac{{cos{{40}°}+sin{{50}°}(1+\sqrt{3}tan{{10}°})}}{{sin{{70}°}\sqrt{1+cos{{40}°}}}}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知圓C:x2+y2-2ax-2(a-1)y-1+2a=0(a≠1)對(duì)所有的a∈R且a≠1總存在直線l與圓C相切,則直線l的方程為y=-x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知直線PM∥QN,PM,QN分別與平面α交于M,N,直線PQ交平面α于A點(diǎn).求證:M,N,A三點(diǎn)在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.從觀測(cè)點(diǎn)C測(cè)得點(diǎn)A的方位角是北偏東40°,點(diǎn)B的方位角是南偏東20°,若點(diǎn)A,B與點(diǎn)C的距離均為10cm,求A,B兩點(diǎn)之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(sinx)=cosx,求f(cosx)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知-$\frac{2π}{3}$$≤θ≤\frac{π}{6}$,求sinθ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax(a>0,且a≠1)在[-1,1]上的函數(shù)值總小于2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.長(zhǎng)方體ABCD-A1B1C1D1中,若$\overrightarrow{AB}$=3i,$\overrightarrow{AD}$=2j,$\overrightarrow{A{A}_{1}}$=5k,則$\overrightarrow{A{C}_{1}}$=( 。
A.$\overrightarrow{i}$+$\overrightarrow{j}$+$\overrightarrow{k}$B.$\frac{1}{3}$$\overrightarrow{i}$+$\frac{1}{2}$$\overrightarrow{j}$+$\frac{1}{5}$$\overrightarrow{k}$C.3$\overrightarrow{i}$+2$\overrightarrow{j}$+5$\overrightarrow{k}$D.3$\overrightarrow{i}$+2$\overrightarrow{j}$-5$\overrightarrow{k}$

查看答案和解析>>

同步練習(xí)冊(cè)答案