【題目】下列四個(gè)結(jié)論正確的是( )
①若p∧q是真命題,則¬p可能是真命題;
②命題“x0∈R,x02﹣x0﹣1<0”的否定是“x∈R,x2﹣x﹣1≥0”;
③“a>5且b>﹣5”是“a+b>0”的充要條件;
④當(dāng)α<0時(shí),冪函數(shù)y=xα在區(qū)間(0,+∞)上單調(diào)遞減.
A.①④
B.②③
C.①③
D.②④
【答案】D
【解析】解:①若p∧q是真命題,則p,q同時(shí)為真命題,則¬p是假命題,故¬p可能是真命題錯(cuò)誤,故①錯(cuò)誤,
②特稱(chēng)命題的否定是全稱(chēng)命題,則命題“x0∈R,x02﹣x0﹣1<0”的否定是“x∈R,x2﹣x﹣1≥0”;正確,故②正確,
③“a>5且b>﹣5”則“a+b>0”成立,當(dāng)a=﹣1,b=2滿(mǎn)足a+b>0,但a+b>0錯(cuò)誤,即“a>5且b>﹣5”是“a+b>0”的充分不必要條件,故③錯(cuò)誤,
④根據(jù)冪函數(shù)的性質(zhì)知,當(dāng)α<0時(shí),冪函數(shù)y=xα在區(qū)間(0,+∞)上單調(diào)遞減.正確,故④正確,
故選:D
【考點(diǎn)精析】利用命題的真假判斷與應(yīng)用對(duì)題目進(jìn)行判斷即可得到答案,需要熟知兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明命題:“若a,b∈N,ab能被3整除,那么a,b中至少有一個(gè)能被3整除”時(shí),假設(shè)應(yīng)為( )
A.a,b都能被3整除
B.a,b都不能被3整除
C.a,b不都能被3整除
D.a不能被3整除
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=x3+3x2+a有且僅有兩個(gè)零點(diǎn)x1和x2(x1<x2),則x2﹣x1的值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】滿(mǎn)足M{a,b,c,d,e}的集合M的個(gè)數(shù)為( )
A.15
B.16
C.31
D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)的定義域?yàn)镽,則“函數(shù)f(x)是奇函數(shù)”是“f(0)=0”的( )
A.必要不充分條件
B.既不充分也不必要條件
C.充要條件
D.充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是( )
A.若x≥10,則x>10
B.若x2≥25,則x≥5
C.若x>y,則x2≥y2
D.若x2≥y2 , 則|x|≥|y|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的各項(xiàng)均為正值,若a3+2a6=6,則a4a6的最大值為( )
A.1
B.2
C.4
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x>0,ln(x+1)>0;命題q:若a>b,則a2>b2 , 下列命題為真命題的是( )
A.p∧q
B.p∧¬q
C.¬p∧q
D.¬p∧¬q
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com