已知各項不為0的等差數(shù)列{an}滿足數(shù)學公式,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b5b9=


  1. A.
    16
  2. B.
    8
  3. C.
    4
  4. D.
    2
A
分析:利用等差數(shù)列的性質(zhì)可把原式化簡可得4a7-a72=0,從而可求a7,再由等比數(shù)列的性質(zhì)可得b5•b9=b72,從而可求結(jié)果.
解答:由等差數(shù)列的性質(zhì)可得,a2+a12=2a7
由2a2-a72+2a12=0可得4a7-a72=0,∴a7=0或a7=4.
當a7=0時,b7=a7=0不符,舍去.
當a7=4時,b7=4,b5•b9=b72=16,
故選A.
點評:本題主要考查了等差數(shù)列(若m+n=p+q,則再等差數(shù)列中有am+an=ap+aq;在等比數(shù)列中有am•an=ap•aq)與等比數(shù)列的性質(zhì)的綜合應用,利用性質(zhì)可以簡化基本運算,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知各項不為0的等差數(shù)列{an}滿足2a3-a72+2a11=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b5b9=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項不為0的等差數(shù)列{an}滿足2a2-a72+2a12=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b3b11等于
16
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項不為0的等差數(shù)列{an}滿足a52-a3-a7=0,則a5=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項不為0的等差數(shù)列{an}滿足:
π
6
a2-
a
2
7
+
π
6
a12=0
,數(shù)列{bn}是各項均為正值的等比數(shù)列,且b7=a7,則tan(
b4b10
)
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項不為0的等差數(shù)列{an}滿足2a2 +2a12=a72 ,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b5b9=( 。

查看答案和解析>>

同步練習冊答案