年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線x2=4y的焦點(diǎn)為F,過焦點(diǎn)F且不平行于x軸的動(dòng)直線交拋物線于A、B兩點(diǎn),拋物線在A、B兩點(diǎn)處的切線交于點(diǎn)M.
(1) 求證:A、M、B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(2) 設(shè)直線MF交該拋物線于C、D兩點(diǎn),求四邊形ACBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線關(guān)于x軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn)O,并且經(jīng)過點(diǎn)M(2,y0).若點(diǎn)M到該拋物線焦點(diǎn)的距離為3,則OM=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B,交其準(zhǔn)線于點(diǎn)C.若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:
(1) 兩準(zhǔn)線間的距離為,焦距為2 ;
(2) 已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P 到兩焦點(diǎn)的距離分別為過P點(diǎn)作長軸的垂線恰好過橢圓的一個(gè)焦點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長為1,動(dòng)點(diǎn)M(2,t)(t>0)在直線x= (a為長半軸,c為半焦距)上.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3) 設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN,那么kPM與kPN之積是與點(diǎn)P位置無關(guān)的定值.試對(duì)雙曲線=1寫出具有類似特性的性質(zhì),并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com