已知定義在R上的函數(shù)f(x)滿足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0
,
②f(2011)的值為
-1
-1
分析:將所求值的中自變量代入分段函數(shù)解析式即可得到函數(shù)值.
解答:解:由題意知,f(-1)=1,f(0)=0,
則f(1)=f(0)-f(-1)=-1,
f(2)=f(1)-f(0)=-1,
f(3)=f(2)-f(1)=0,
f(4)=f(3)-f(2)=1,
f(5)=f(4)-f(3)=1,
f(6)=f(5)-f(4)=0,
f(7)=f(6)-f(5)=-1
=f(1),

所以f(2011)=f(6×335+1)=f(1)=-1,
故答案為(1)f(3)=0;(2)f(2011)=-1.
點評:本題主要考查了函數(shù)的周期性,以及函數(shù)求值,同時考查了轉化的思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足下列條件:
①對任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對x∈R都有f(2+x)=f(2-x),當f(-3)=-2時,f(2013)的值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x),對任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關于直線x=-1對稱,則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習冊答案