函數(shù)f(x)=2sin(ωx+φ)的圖象,其部分圖象如圖所示:則f(0)=


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    1
  4. D.
    -1
B
分析:先確定函數(shù)的周期,求得最高點的坐標(biāo),從而確定函數(shù)的解析式,即可求得結(jié)論.
解答:由題意,,∴T=2π,∴ω==1
由圖可得,最高點的坐標(biāo)為(,2),∴2=2sin(+φ),∴φ可取-
∴f(x)=2sin(x-
∴f(0)=2sin(-)=
故選B.
點評:本題考查函數(shù)解析式的確定,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(x+
π
3
)-2sinx,x∈[-
π
2
,0].
(Ⅰ)若cosx=
3
3
,求函數(shù)f(x)的值;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[-
π
6
,
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin(
x
3
+
π
6
)的一個對稱中心是
(-
π
2
,0)(答案不唯一)
(-
π
2
,0)(答案不唯一)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的函數(shù)f(x)=
2
sin(2x+φ)(-π<φ<0),f(x)是偶函數(shù)
(Ⅰ)求φ的值;
(Ⅱ)求使f(x)>1成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx-
π
6
),(ω>0,x∈R)的最小正周期為2π.
(1)求f(0)的值;
(2)若cosθ=-
3
5
,θ∈(
π
2
,π),求f(θ+
π
3
).

查看答案和解析>>

同步練習(xí)冊答案