【題目】在中,三個內(nèi)角的對邊分別為.
(1)若是的等差中項,是的等比中項,求證:為等邊三角形;
(2)若為銳角三角形,求證:.
【答案】(1)見解析(2)見解析
【解析】
(1)由是的等差中項可得,由是的等比中項,結(jié)合正弦定理與余弦定理即可得到,由此證明為等邊三角形;
(2)解法1:利用分析法,結(jié)合銳角三角形的性質(zhì)即可證明;
解法2:由為銳角三角形以及三角形的內(nèi)角和為,可得,利用公式展開,進行化簡即可得到。
(1)由成等差數(shù)列,有 ①
因為為的內(nèi)角,所以 ②
由①②得 ③
由是的等比中項和正弦定理得,
是的等比中項, 所以 ④
由余弦定理及③,可得
再由④,得即,因此
從而 ⑤
由②③⑤,得
所以為等邊三角形.
(2)解法1: 要證
只需證
因為、、都為銳角,所以,
故只需證:
只需證:
即證:
因為,所以要證:
即證:
即證:
因為為銳角,顯然
故原命題得證,即.
解法2:因為為銳角,所以
因為
所以, 即
展開得:
所以
因為、、都為銳角,所以,
所以
即
科目:高中數(shù)學 來源: 題型:
【題目】閱讀:
已知、,,求的最小值.
解法如下:,
當且僅當,即時取到等號,
則的最小值為.
應用上述解法,求解下列問題:
(1)已知,,求的最小值;
(2)已知,求函數(shù)的最小值;
(3)已知正數(shù)、、,,
求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某次人才招聘會上,假定某畢業(yè)生贏得甲公司面試機會的概率為,贏得乙、丙兩公司面試機會的概率均為,且三家公司是否讓其面試是相互獨立的,則該畢業(yè)生只贏得甲、乙兩家公司面試機會的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.某品牌公司一直默默拓展海外市場,在海外設(shè)了多個分支機構(gòu),現(xiàn)需要國內(nèi)公司外派大量中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從中青年員工中隨機調(diào)查了位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
中年員工 | |||
青年員工 | |||
合計 |
由并參照附表,得到的正確結(jié)論是
附表:
0.10 | 0.01 | 0.001 | |
2.706 | 6.635 | 10.828 |
A. 在犯錯誤的概率不超過10%的前提下,認為 “是否愿意外派與年齡有關(guān)”;
B. 在犯錯誤的概率不超過10%的前提下,認為 “是否愿意外派與年齡無關(guān)”;
C. 有99% 以上的把握認為“是否愿意外派與年齡有關(guān)”;
D. 有99% 以上的把握認為“是否愿意外派與年齡無關(guān)”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點, 為橢圓:上異于點A,B的任意一點.
(Ⅰ)求證:直線、的斜率之積為-;
(Ⅱ)是否存在過點的直線與橢圓交于不同的兩點、,使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是一種反映和評價空氣質(zhì)量的方法,AQI指數(shù)與空氣質(zhì)量對應如表所示:
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
如圖是某城市2018年12月全月的AQI指數(shù)變化統(tǒng)計圖:
根據(jù)統(tǒng)計圖判斷,下列結(jié)論正確的是( 。
A. 整體上看,這個月的空氣質(zhì)量越來越差
B. 整體上看,前半月的空氣質(zhì)量好于后半個月的空氣質(zhì)量
C. 從AQI數(shù)據(jù)看,前半月的方差大于后半月的方差
D. 從AQI數(shù)據(jù)看,前半月的平均值小于后半月的平均值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)的定義域為D,若函數(shù)滿足條件:存在,使在上的值域為,則稱為“倍縮函數(shù)”,若函數(shù)為“倍縮函數(shù)”,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知甲、乙、丙、丁、戊、己6人.(以下問題用數(shù)字作答)
(1)邀請這6人去參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的安排方法?
(2)將這6人作為輔導員全部安排到3項不同的活動中,求每項活動至少安排1名輔導員的方法總數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠家擬在2020年舉行促銷活動,經(jīng)調(diào)查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元,滿足(為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費用(萬元)的函數(shù);
(2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com