【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1 , a14=b4
(1)求{an}的通項(xiàng)公式;
(2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和.

【答案】
(1)解:設(shè){an}是公差為d的等差數(shù)列,

{bn}是公比為q的等比數(shù)列,

由b2=3,b3=9,可得q= =3,

bn=b2qn2=33n2=3n1;

即有a1=b1=1,a14=b4=27,

則d= =2,

則an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1


(2)解:cn=an+bn=2n﹣1+3n1,

則數(shù)列{cn}的前n項(xiàng)和為

(1+3+…+(2n﹣1))+(1+3+9+…+3n1)= n2n+

=n2+


【解析】1、由等比數(shù)列和等差數(shù)列的定義可求得公比q=3,公差d=2,即得等差數(shù)列的通項(xiàng)公式。
2、根據(jù)題意把數(shù)列{cn}的前n項(xiàng)和分解成為一個等差數(shù)列前2n-1項(xiàng)的和和一個等比數(shù)列前2n-1項(xiàng)的和,利用公式求得。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,直l線l的參數(shù)方程為 (t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=10cosθ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(2,6),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=4sinωxsin(ωx+ )﹣1(ω>0),f(x)的最小正周期為π.
(Ⅰ)當(dāng)x∈[0, ]時,求f(x)的最大值;
(Ⅱ)請用“五點(diǎn)作圖法”畫出f(x)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,霧霾日趨嚴(yán)重,我們的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點(diǎn)問題.某空氣凈化器制造廠,決定投入生產(chǎn)某型號的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)該型號空氣凈化器x(百臺),其總成本為P(x)(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本).銷售收入Q(x)(萬元)滿足Q(x)= ,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)以述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)求利潤函數(shù)y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)工廠生產(chǎn)多少百臺產(chǎn)品時,可使利潤最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且n+1=1+Sn對一切正整數(shù)n恒成立.
(1)試求當(dāng)a1為何值時,數(shù)列{an}是等比數(shù)列,并求出它的通項(xiàng)公式;
(2)在(1)的條件下,當(dāng)n為何值時,數(shù)列 的前n項(xiàng)和Tn取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 的定義域是;若函數(shù) 的最大值為 ,則實(shí)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校一?荚嚁(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程序的破壞,可見部分如下

試根據(jù)圖表中的信息解答下列問題:
(1)求全班的學(xué)生人數(shù)及分?jǐn)?shù)在 之間的頻數(shù);
(2)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于 , ,和 分?jǐn)?shù)段的試卷中抽取8份進(jìn)行分析,再從中任選2人進(jìn)行交流,求交流的2名學(xué)生中,恰有一名成績位于 分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 + =1與x軸交于A、B兩點(diǎn),過橢圓上一點(diǎn)P(x0 , y0)(P不與A、B重合)的切線l的方程為 + =1,過點(diǎn)A、B且垂直于x軸的垂線分別與l交于C、D兩點(diǎn),設(shè)CB、AD交于點(diǎn)Q,則點(diǎn)Q的軌跡方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)證明 有且只有一個零點(diǎn);
(2)求這個零點(diǎn)所在的一個區(qū)間,使這個區(qū)間的長度不大于 .

查看答案和解析>>

同步練習(xí)冊答案