已知奇函數(shù)f(x)在x≥0時(shí)的圖象如圖所示,則不等式xf(x)<0的解集________.

(-2,-1)∪(1,2).
分析:由f(x)是奇函數(shù)得函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,由xf(x)<0可得x與f(x)符號(hào)相反,根據(jù)奇函數(shù)的對(duì)稱性可求得結(jié)果
解答:∵xf(x)<0
①當(dāng)x>0時(shí),f(x)<0,
結(jié)合函數(shù)的圖象可得,1<x<2,
(2)x<0時(shí),f(x)>0,
根據(jù)奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱可得,-2<x<-1,
∴不等式xf(x)<0的解集為(-2,-1)∪(1,2).
故答案為:(-2,-1)∪(1,2).
點(diǎn)評(píng):由函數(shù)的奇偶性得出整個(gè)圖象,分類討論的思想得出函數(shù)值的正負(fù),數(shù)形結(jié)合得出自變量的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知奇函數(shù)f(x)在x≥0時(shí)的圖象是如圖所示的拋物線的一部分,
(1)求函數(shù)f(x)的表達(dá)式,
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在[-1,0]上單調(diào)遞減,又α,β為銳角三角形的兩內(nèi)角,則有( 。
A、f(sinα-sinβ)≥f(cosα-cosβ)B、f(sinα-cosβ)>f(cosα-sinβ)C、f(sinα-cosβ)≥f(cosα-sinβ)D、f(sinα-cosβ)<f(cosα-sinβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在R上單調(diào)遞增,且f(2x-1)+f(
1
2
)<0,則x的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個(gè)命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1};
④在極坐標(biāo)系中,圓ρ=-4cosθ的圓心的直角坐標(biāo)是(-2,0).
其中正確的是
②,④
②,④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在R上單調(diào)遞減,且f(3-a)+f(1-a)<0,則a的取值范圍是
(-∞,2)
(-∞,2)

查看答案和解析>>

同步練習(xí)冊答案