精英家教網 > 高中數學 > 題目詳情

若點(1,1)到直線xcosαysinα=2的距離為d,則d的最大值是__________.

解析:依題意有d=|cosα+sinα-2|=|sin(α)-2|,

于是當sin(α)=-1時,d取得最大值2+.

答案:2+

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

本題有(1)、(2)、(3)三個選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣A=
1a
-1b
,A的一個特征值λ=2,其對應的特征向量是α1=
2
1

(Ⅰ)求矩陣A;
(Ⅱ)若向量β=
7
4
,計算A2β的值.

(2).選修4-4:坐標系與參數方程
已知橢圓C的極坐標方程為ρ2=
12
3cos2θ+4sin2θ
,點F1,F2為其左、右焦點,直線l的參數方程為
x=2+
2
2
t
y=
2
2
t
(t為參數,t∈R).求點F1,F2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數.求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•青島一模)設F1F2別是橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,過F2斜角為
π
3
的直線交橢圓D于A、B點,F1到直線AB的距離為3,連接橢圓D的四個頂點得到的菱形面積為4.
(Ⅰ)求橢圓D的方程;
(Ⅱ)作直線l與橢圓D交于不同的兩點P,Q,其中P點的坐標為(-A,0),若點N(0,t)是線段PQ垂直平分線的一點,且滿足
NP
NQ
=4
,求實數t的值.

查看答案和解析>>

科目:高中數學 來源:2015屆浙江省高一下學期期末理科數學試卷(解析版) 題型:解答題

已知直線經過點

(1)若直線平行于直線,求直線的方程;

(2)若點和點到直線的距離相等,求直線的方程.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年重慶市高三第五次月考理科數學 題型:解答題

已知點P是直角坐標平面內的動點,點P到直線的距離為d1,到點F(– 1,0)的距離為d2,且

(1)    求動點P所在曲線C的方程;

(2)    直線過點F且與曲線C交于不同兩點AB(點AB不在x軸上),分別過A、B點作直線的垂線,對應的垂足分別為,試判斷點F與以線段為直徑的圓的位置關系(指在圓內、圓上、圓外等情況);

(3)    記,,(A、B、是(2)中的點),問是否存在實數,使成立.若存在,求出的值;若不存在,請說明理由.

 

 

查看答案和解析>>

同步練習冊答案