(2012•臨沂二模)如圖,AB為圓O的直徑,點(diǎn)E、F在圓上且EF∥AB,矩形ABCD所在平面和圓O所在平面垂直,已知AB=2,EF=1.
(Ⅰ)求證:平面ADE⊥平面BCE;
(Ⅱ)當(dāng)AD的長(zhǎng)為何值時(shí),二面角D-EF-B的大小為60°?
分析:(Ⅰ)證明BE⊥平面ADE,利用面面垂直的判定,可得平面ADE⊥平面BCE;
(Ⅱ)過(guò)點(diǎn)A作AM⊥EF,交EF的延長(zhǎng)線于點(diǎn)M,連接DM,則可得∠DMA為二面角D-FE-B的平面角,求出MA的長(zhǎng),即可求得結(jié)論.
解答:(Ⅰ)證明:∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,DA⊥AB
∴DA⊥平面ABEF,
∵BE?平面ABEF,∴DA⊥BE
∵AB是圓O的直徑,∴BE⊥AE
∵DA∩AE=A,∴BE⊥平面ADE
∵BE?平面BCE,∴平面ADE⊥平面BCE;
(Ⅱ)解:過(guò)點(diǎn)A作AM⊥EF,交EF的延長(zhǎng)線于點(diǎn)M,連接DM.

根據(jù)(Ⅰ)的證明,DA⊥平面ABEF,則DM⊥EF,
∴∠DMA為二面角D-FE-B的平面角,即∠DMA=60°.
過(guò)F作AB的垂線,交AB與點(diǎn)H
在Rt△AFH中,∵AH=
1
2
,AF=1,∴FH=
3
2

又∵四邊形AMFH為矩形,∴MA=FH=
3
2

∵AD=MA•tan∠DMA=
3
2
3
=
3
2

因此,當(dāng)AD的長(zhǎng)為
3
2
時(shí),二面角D-FE-B的大小為60°.
點(diǎn)評(píng):本小題主要考查空間線面關(guān)系、二面角的度量等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臨沂二模)在圓x2+y2=4上任取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線段,D為垂足,點(diǎn)M在線段PD上,且|DP|=
2
|DM|,點(diǎn)P在圓上運(yùn)動(dòng).
(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)過(guò)定點(diǎn)C(-1,0)的直線與點(diǎn)M的軌跡交于A、B兩點(diǎn),在x軸上是否存在點(diǎn)N,使
NA
NB
為常數(shù),若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臨沂二模)已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線y=0,x=a(0<a≤1)和曲線y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,點(diǎn)P落在區(qū)域A內(nèi)的概率是
1
64
,則a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臨沂二模)若某程序框圖如圖所示,則輸出的p的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臨沂二模)若純虛數(shù)z滿(mǎn)足(2-i)z=4-bi,(i是虛數(shù)單位,b是實(shí)數(shù)),則b=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臨沂二模)已知命題p:?x∈[1,2],x2-a≥0,命題q:?x∈R.x2+2ax+2-a=0,若“p且q”為真命題,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案