過點(-1,3)且平行于直線x-2y+3=0的直線方程為


  1. A.
    x-2y+7=0
  2. B.
    2x+y-1=0
  3. C.
    x-2y-5=0
  4. D.
    2x+y-5=0
A
分析:由題意可先設所求的直線方程為x-2y+c=0再由直線過點(-1,3),代入可求c的值,進而可求直線的方程
解答:由題意可設所求的直線方程為x-2y+c=0
∵過點(-1,3)
代入可得-1-6+c=0 則c=7
∴x-2y+7=0
故選A.
點評:本題主要考查了直線方程的求解,解決本題的關鍵根據(jù)直線平行的條件設出所求的直線方程x-2y+c=0.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

18、如圖,在四棱錐P-ABCD中,側面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為2的菱形,∠BAD=60°,N是PB中點,過A、N、D三點的平面交PC于M.
(1)求證:DP∥平面ANC;
(2)求證:M是PC中點;
(3)求證:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正三棱柱ABCA1B1C1,過一面對角線AB1且與另一面對角線BC1平行的平面交上底面A1B1C1的一邊A1C1于點D.

(1)確定D點的位置,并證明你的結論.

(2)證明平面AB1D⊥平面AA1D.

(3)若AB=6,AA1=4,求直線BC1與平面AB1D的距離.

(4)若ABA1A=k,問是否存在實數(shù)k,使平面AB1D與平面AB1A1所成角的大小為45°?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐中,側面

是正三角形,且與底面垂直,底面是邊長為2的菱形,,中點,過、三點的平面交. 

(1)求證:;   (2)求證:中點;(3)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

  如圖所示,空間四邊形ABCD中,E、F、G分別在AB、BC、CD上,且滿足AE∶EB=CF∶FB=2∶1,CG∶GD=   

3∶1,過E、F、G的平面交AD于H,連接EH.

(1)求AH∶HD;

(2)求證:EH、FG、BD三線共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖22,在四棱錐P—ABCD中,側面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為2的菱形,∠BAD=60°,N是PB中點,過A、D、N三點的平面交PC于M,E為AD的中點.

圖22

(1)求證:EN∥平面PCD;

(2)求證:平面PBC⊥平面ADMN;

(3)求平面PAB與平面ABCD所成二面角的正切值.

查看答案和解析>>

同步練習冊答案