設(shè){
an}遞增等差數(shù)列,前三項(xiàng)的和為12,前三項(xiàng)的積為48,則它的首項(xiàng)是( )
本題考查等差數(shù)列通項(xiàng)公式和基本運(yùn)算.
設(shè)公差為
則
即
又
又(1),(2)得
即
解得
因?yàn)閿?shù)列是遞增等差數(shù)列,
所以
故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知函數(shù)f(x)=x3+x2-2.
(1)設(shè){an}是正數(shù)組成的數(shù)列,前n項(xiàng)和為Sn,其中a1=3.若點(diǎn)(an,an+12-2an+1)(n∈N*)在函數(shù)y=f′(x)的圖象上,求證:點(diǎn)(n,Sn)也在y=f′(x)的圖象上;
(2)求函數(shù)f(x)在區(qū)間(a-1,a)內(nèi)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)(1)
為等差數(shù)列{
an}的前
n項(xiàng)和,
,
,求
.
(2)在等比數(shù)列
中,
求
的范圍
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
的前
項(xiàng)和
和通項(xiàng)
滿足
數(shù)列
中,
(1)求數(shù)列
,
的通項(xiàng)公式;
(2)數(shù)列
滿足
是否存在正整數(shù)
,使得
時(shí)
恒成立?若存在,求
的最小值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)遞增等差數(shù)列
的前
項(xiàng)和為
,已知
,
是
和
的等比中項(xiàng),
(I)求數(shù)列
的通項(xiàng)公式
(II
)求數(shù)列
的前
項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列
是等差數(shù)列,
是各項(xiàng)都為正數(shù)的等比數(shù)列,且
,
,
(1)求
,
的通項(xiàng)公式;
(2)數(shù)列
的前
項(xiàng)和為
,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分15分)已知各項(xiàng)均不相等的等差數(shù)列
的前四項(xiàng)和
,且
成等比.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)
為數(shù)列
的前n項(xiàng)和,若
對(duì)一切
恒成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
設(shè)數(shù)列
滿足
>0,
,其前n 項(xiàng)和為
,且
(1) 求
與
之間的關(guān)系,并求數(shù)列
的通項(xiàng)公式;
(2) 令
求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
數(shù)列{a
n}中,S
n是其前n項(xiàng)的和,若a
1=1,a
n+1=
S
n(n≥1),則a
n=
查看答案和解析>>