【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,數(shù)列{bn}滿足 ,則數(shù)列{anbn}的前n項(xiàng)和Tn=

【答案】10+(3n﹣5)2n+1
【解析】解:由已知得,當(dāng)n≥2時(shí),an=Sn﹣Sn1=( n2 n)﹣[ (n﹣1)2 (n﹣1)]=3n﹣2,又a1=1=3×1﹣2,符合上式.
故數(shù)列{an}的通項(xiàng)公式an=3n﹣2.
又因?yàn)? ,
所以log2bn= (an+2)=n,即bn=2n ,
令cn=anbn
則cn=(3n﹣2)2n
所以Tn=1×21+422+723+…+(3n﹣2)2n , ①
2Tn=1×22+4×23+724+…+(3n﹣2)2n+1 , ②
由②﹣①得:﹣Tn=2+322+323+…+(3n﹣5)2n+1=3×(2+22+…+2n)﹣(3n﹣2)2n+1﹣2
=﹣(3n﹣5)2n+1﹣10,
所以Tn=10+(3n﹣5)2n+1
故答案是:10+(3n﹣5)2n+1
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和的相關(guān)知識點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 其中P,M是非空數(shù)集,且P∩M=,設(shè)f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(I)若P=(﹣∞,0),M=[0,4],求f(P)∪f(M);
(II)是否存在實(shí)數(shù)a>﹣3,使得P∪M=[﹣3,a],且f(P)∪f(M)=[﹣3,2a﹣3]?若存在,請求出滿足條件的實(shí)數(shù)a;若不存在,請說明理由;
(III)若P∪M=R,且0∈M,I∈P,f(x)是單調(diào)遞增函數(shù),求集合P,M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于不等式,則對區(qū)間上的任意x都成立的實(shí)數(shù)t的取值范圍是_______

【答案】

【解析】

根據(jù)二次函數(shù)的單調(diào)性求出x2﹣3x+2在區(qū)間[0,2]上的最小值和最大值,把問題轉(zhuǎn)化關(guān)于t的不等式組得答案.

∵x2﹣3x+2=,

當(dāng)x[0,2]時(shí),,(x2﹣3x+2)max=2.

對于不等式(2t﹣t2)≤x2﹣3x+2≤3﹣t2,對區(qū)間[0,2]上任意x都成立的實(shí)數(shù)t的取值范圍是[﹣1,1﹣].

故答案為:[﹣1,1﹣].

【點(diǎn)睛】

本題考查函數(shù)恒成立問題,考查了不等式的解法,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是基礎(chǔ)題.二次不等式分含參二次不等式和不含參二次不等式;對于含參的二次不等式問題,先判斷二次項(xiàng)系數(shù)是否含參,接著討論參數(shù)等于0,不等于0,再看式子能否因式分解,若能夠因式分解則進(jìn)行分解,再比較兩根大小,結(jié)合圖像得到不等式的解集.

型】填空
結(jié)束】
16

【題目】等差數(shù)列{an}的公差d≠0滿足成等比數(shù)列,若=1,Sn{}的前n項(xiàng)和,則的最小值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線C1的參數(shù)方程為 (θ為參數(shù)),將曲線C1上所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)伸長為原來的倍,得到曲線C2.以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(cosθ-2sinθ)=6.

(1)求曲線C2和直線l的普通方程.

(2)P為曲線C2上任意一點(diǎn),求點(diǎn)P到直線l的距離的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】199個(gè)自然數(shù)中任取兩個(gè):

恰有一個(gè)偶數(shù)和恰有一個(gè)奇數(shù);至少有一個(gè)是奇數(shù)和兩個(gè)數(shù)都是奇數(shù);

至多有一個(gè)奇數(shù)和兩個(gè)數(shù)都是奇數(shù);至少有一個(gè)奇數(shù)和至少有一個(gè)偶數(shù).

在上述事件中,是對立事件的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x),滿足 ,且f(3)=f(1)﹣1.
(1)求實(shí)數(shù)k的值;
(2)若函數(shù)g(x)=f(x)+f(﹣x)(﹣2≤x≤2),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用長為18 cm的鋼條圍成一個(gè)長方體形狀的框架,要求長方體的長與寬之比為21,問該長方體的長、寬、高各為多少時(shí),其體積最大?最大體積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù),當(dāng)x∈(-3,2)時(shí),>0,當(dāng)x∈(-,-3)(2,+)時(shí),<0

(I)求ab的值;

(II)若不等式的解集為R,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) 的圖象向右平移 個(gè)單位長度后,所得圖象的一條對稱軸方程可以是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案