【題目】某媒體為調查喜愛娛樂節(jié)目是否與觀眾性別有關,隨機抽取了30名男性和30名女性觀眾,抽查結果用等高條形圖表示如圖:

喜歡節(jié)目A

不喜歡節(jié)目A

總計

男性觀眾

女性觀眾

總計

1)根據(jù)該等高條形圖,完成右上列聯(lián)表,并用獨立性檢驗的方法分析,則在犯錯誤的概率不超過多少的前提下認為喜歡娛樂節(jié)目與觀眾性別有關?

2)從男性觀眾中按喜歡節(jié)目與否,用分層抽樣的方法抽取5名做進一步調查.從這5名中任選2名,求恰有1名喜歡節(jié)目1名不喜歡節(jié)目的概率.

附:

0.100

0.050

0.010

0.00

2.706

3.841

6.635

10.828

【答案】1)見解析,能在犯錯誤的概率不超過0.05的前提下認為喜歡娛樂節(jié)目與觀眾性別有關.(2

【解析】

(1)根據(jù)圖表中男女喜歡與不喜歡所占的比例以及總人數(shù)補全列聯(lián)表,再計算的值,對照表中所給的數(shù)據(jù)分析即可.
2)利用分層抽樣在男性抽取5名,喜歡娛樂節(jié)目的人數(shù)為4人,不喜歡節(jié)目的人數(shù)為1人,根據(jù)古典概率的計算方法可求概率.

由等高條形圖,男性喜歡節(jié)目A的人數(shù)為30×0.8=24人,不喜歡節(jié)目A的人數(shù)為6人,

女性喜歡節(jié)目A的人數(shù)為30×0.5=15人,不喜歡節(jié)目A的人數(shù)為15人.

由題意得列聯(lián)表如表:

喜歡節(jié)目A

不喜歡節(jié)目A

總計

男性觀眾

24

6

30

女性觀眾

15

15

30

總計

39

21

60

的觀測值

所以能在犯錯誤的概率不超過0.05的前提下認為喜歡娛樂節(jié)目與觀眾性別有關.

2)利用分層抽樣在男性抽取5名,喜歡娛樂節(jié)目的人數(shù)為,不喜歡節(jié)目的人數(shù)為

恰有1名喜歡節(jié)目1名不喜歡節(jié)目的概率

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司共有職工1500人,其中男職工1050人,女職工450人.為調查該公司職工每周平均上網(wǎng)的時間,采用分層抽樣的方法,收集了300名職工每周平均上網(wǎng)時間的樣本數(shù)據(jù)(單位:小時)

男職工

女職工

總計

每周平均上網(wǎng)時間不超過4個小時

每周平均上網(wǎng)時間超過4個小時

70

總計

300

(Ⅰ)應收集多少名女職工樣本數(shù)據(jù)?

(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到職工每周平均上網(wǎng)時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,.試估計該公司職工每周平均上網(wǎng)時間超過4小時的概率是多少?

(Ⅲ)在樣本數(shù)據(jù)中,有70名女職工的每周平均上網(wǎng)時間超過4個小時.請將每周平均上網(wǎng)時間與性別的列聯(lián)表補充完整,并判斷是否有95%的把握認為“該公司職工的每周平均上網(wǎng)時間與性別有關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到兩定點,距離之和為4(),且動點的軌跡曲線過點.

(1)求的值;

(2)若直線與曲線有不同的兩個交點,且為坐標原點),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,把ABDACD折成互相垂直的兩個平面后,某學生得出下列四個結論:

BDAC

②△BAC是等邊三角形;

③三棱錐DABC是正三棱錐;

④平面ADC⊥平面ABC.

其中正確的是(

A.①②④B.①②③

C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黃岡市的天氣預報顯示,大別山區(qū)在今后的三天中,每一天有強濃霧的概率為,現(xiàn)用隨機模擬的方法估計這三天中至少有兩天有強濃霧的概率:先利用計算器產(chǎn)生之間整數(shù)值的隨機數(shù),并用0,1,2,3,4,5表示沒有強濃霧,用6,7,8,9表示有強濃霧,再以每3個隨機數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機數(shù):

779 537 113 730 588 506 027 394 357 231

683 569 479 812 842 273 925 191 978 520

則這三天中至少有兩天有強濃霧的概率近似為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設函數(shù)

1處取得極值,確定的值,并求此時曲線在點處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校參加高一年級期中考試的學生中隨機抽出60名學生,將其數(shù)學成績分成六段、、后得到如圖部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;

統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;

若從60名學生中隨抽取2人,抽到的學生成績在記0分,在記1分,在記2分,用表示抽取結束后的總記分,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中.

(1)當q=1時,化簡:;

(2)當q=n時,記,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市十所重點中學進行高三聯(lián)考,共有5000名考生,為了了解數(shù)學學科的學習情況,現(xiàn)從中隨機抽出若干名學生在這次測試中的數(shù)學成績,制成如下頻率分布表:

分組

頻數(shù)

頻率

36

12

合計

1)根據(jù)上面頻率分布表,推出①,②,③,④處的數(shù)值分別為 , , ,

2)在所給的坐標系中畫出區(qū)間上的頻率分布直方圖;

3)根據(jù)題中信息估計總體:

i120分及以上的學生數(shù);

ii)平均分;

iii)成績落在中的概率.

查看答案和解析>>

同步練習冊答案