6.比值$\frac{l}{r}$(l是圓心角α所對的弧長,r是該圓的半徑)(  )
A.既與α的大小有關(guān),又與r的大小有關(guān)
B.與α及r的大小都無關(guān)
C.與α的大小有關(guān),而與r的大小無關(guān)
D.與α的大小無關(guān),而與r的大小有關(guān)

分析 由題意,比值$\frac{l}{r}$=|α|,即可得出結(jié)論.

解答 解:由題意,比值$\frac{l}{r}$=|α|,
∴比值$\frac{l}{r}$與α的大小有關(guān),而與r的大小無關(guān),
故選:C.

點(diǎn)評 本題考查弧度的定義,考查學(xué)生對概念的理解,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列函數(shù)的導(dǎo)數(shù).
(1)y=(2x+3)2
(2)y=e-0.05x+1;
(3)y=sin(πx+φ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={-4,a,a2},B={a+4,-a,4},求適合下列條件的a值:
(1)4∈A∩B;
(2){4}=A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若logax=l,logay=m,logaz=n,則用l、m、n表示loga$\frac{{x}^{3}}{{y}^{2}{z}^{\frac{1}{3}}}$所得的結(jié)果是( 。
A.3l-2m+$\frac{1}{3}n$B.3l-2m-$\frac{1}{3}n$C.3l-2m+3nD.3l-2m-3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.$\frac{26}{3}$π是(  )
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列函數(shù)的最大值,并畫出圖象:
(1)f(x)=-x2+6x-1;
(2)f(x)=2x2-4x,x∈[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=2loga(x-2)+3(a>0,a≠1)恒過定點(diǎn)的坐標(biāo)為(3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓C經(jīng)過點(diǎn)(1,-1),且圓心為C(2,0).
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求直線l:4x+3y-13=0被圓C截得的弦長;
(Ⅲ)過點(diǎn)P(0,-$\sqrt{2}$)作圓C的兩條切線,切點(diǎn)分別是A,B,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在棱長為a的正方體ABCD-A1B1C1D1中,點(diǎn)P為體對角線的中點(diǎn).若△PAC的正視圖的最高點(diǎn)與側(cè)視圖的每一個頂點(diǎn)相連所得的幾何體的體積為V1,正方體外接球的體積為V2,則$\frac{{V}_{1}}{{V}_{2}}$的值為(  )
A.$\frac{1}{4π}$B.$\frac{\sqrt{3}}{4π}$C.$\frac{\sqrt{3}}{36π}$D.$\frac{\sqrt{6}}{36π}$

查看答案和解析>>

同步練習(xí)冊答案