對(duì)于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…,in)(n是不小于3的正整數(shù)),若對(duì)任意的p,q∈{1,2,3,…,n},當(dāng)p<q時(shí)有ip>iq,則稱ip,iq是該數(shù)組的一個(gè)“逆序”.一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱為該數(shù)組的“逆序數(shù)”,如數(shù)組(2,3,1)的逆序數(shù)等于2.則數(shù)組(5,2,4,3,1)的逆序數(shù)等于    ;若數(shù)組(i1,i2,i3,…,in)的逆序數(shù)為n,則數(shù)組(in,in-1,…,i1)的逆序數(shù)為   
【答案】分析:由于數(shù)組中包含的數(shù)字比較少,數(shù)組(5,2,4,3,1)中的逆序可以列舉出共有8個(gè),對(duì)應(yīng)于含有n個(gè)數(shù)字的數(shù)組中,首先做出任取兩個(gè)數(shù)字時(shí)可以組成的數(shù)對(duì),減去逆序的個(gè)數(shù),得到結(jié)果.
解答:解:由題意知數(shù)組(5,2,4,3,1)中的逆序有
5,2;5,4;5,3;5,1;2,1;4,3;4,1;3,1.
∴逆序數(shù)是8,
∵若數(shù)組(i1,i2,i3,…,in)中的逆序數(shù)為n,
∵這個(gè)數(shù)組中可以組成C=個(gè)數(shù)對(duì),
∴數(shù)組(in,in-1,…,i1)中的逆序數(shù)為-n=
故答案為:8;
點(diǎn)評(píng):本題考查一個(gè)新定義問(wèn)題,解題的關(guān)鍵是讀懂題目條件中所給的條件,并且能夠利用條件來(lái)解決問(wèn)題,本題考查排列組合數(shù)的應(yīng)用,考查列舉法,是一個(gè)非常新穎的問(wèn)題,是一個(gè)考查學(xué)生理解能力的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3…in) (n是不小于3的正整數(shù)),對(duì)于任意的p,q∈{1,2,3,…,n},當(dāng)p<q時(shí)有ip>iq,則稱ip,iq是該數(shù)組的一個(gè)“逆序”,一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于
 
;若數(shù)組(i1,i2,i3,…,in)中的逆序數(shù)為n,則數(shù)組(in,in-1,…,i1)中的逆序數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、對(duì)于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,…,in)(n是不小于2的正整數(shù)),如果在p<q時(shí),有ip>iq,則稱ip與iq是該數(shù)組的一個(gè)“逆序”,一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱為該數(shù)組的“逆序數(shù)”.例如,數(shù)組(2,4,3,1)中有逆序“2,1”,“4,3”,“4,1”,“3,1”,其“逆序數(shù)”等于4.若各數(shù)互不相等的正整數(shù)數(shù)組(a1,a2,a3,a4,a5,a6,a7,a8)的“逆序數(shù)”是2,則(a8,a7,a6,a5,a4,a3,a2)的“逆序數(shù)”至少是
26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、對(duì)于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…in) (n是不小于2的正整數(shù)),對(duì)于任意p,q∈1,2,3,…,n,當(dāng)p<q時(shí)有ip>iq,則稱ip,iq是該數(shù)組的一個(gè)“逆序”,一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淄博一模)對(duì)于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…,in)(n是不小于3的正整數(shù)),若對(duì)任意的p,q∈{1,2,3…,n},當(dāng)p<q時(shí)有ip>iq,則稱ip,iq是該數(shù)組的一個(gè)“逆序”.一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,3,1)的逆序數(shù)等于2,若數(shù)組(i1,i2,i3,…,in)的逆序數(shù)為n,則數(shù)組(in,in-1,…,i1)的逆序數(shù)為
n2-3n
2
n2-3n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•石景山區(qū)一模)對(duì)于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…,in)(n是不小于3的正整數(shù)),若對(duì)任意的p,q∈{1,2,3,…,n},當(dāng)p<q時(shí)有ip>iq,則稱ip,iq是該數(shù)組的一個(gè)“逆序”.一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱為該數(shù)組的“逆序數(shù)”,如數(shù)組(2,3,1)的逆序數(shù)等于2.則數(shù)組(5,2,4,3,1)的逆序數(shù)等于
8
8
;若數(shù)組(i1,i2,i3,…,in)的逆序數(shù)為n,則數(shù)組(in,in-1,…,i1)的逆序數(shù)為
n2-3n
2
n2-3n
2

查看答案和解析>>

同步練習(xí)冊(cè)答案