【題目】已知點(diǎn)和橢圓.直線與橢圓交于不同的兩點(diǎn).

1)當(dāng)時(shí),求的面積;

2)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)中點(diǎn)時(shí),求的值.

【答案】1;(2

【解析】

1)聯(lián)立直線的方程和橢圓方程,求得交點(diǎn)的橫坐標(biāo),由此求得三角形的面積.

2)法一:根據(jù)的坐標(biāo)求得的坐標(biāo),將的坐標(biāo)都代入橢圓方程,化簡(jiǎn)后求得的坐標(biāo),進(jìn)而求得的值.

法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡(jiǎn)后寫(xiě)出根與系數(shù)關(guān)系,結(jié)合求得點(diǎn)的坐標(biāo),進(jìn)而求得的值.

1)設(shè),,

,則直線的方程為

,得,

解得,,

設(shè)直線軸交于點(diǎn),則

.

2)法一:設(shè)點(diǎn)

因?yàn)?/span>,,所以

又點(diǎn),都在橢圓上,

所以

解得

所以.

法二:設(shè)

顯然直線有斜率,設(shè)直線的方程為

,得

所以

解得

所以

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)=2ax2+2bx,若存在實(shí)數(shù)x0∈(0t),使得對(duì)任意不為零的實(shí)數(shù)a,b均有fx0)=a+b成立,則t的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每個(gè)國(guó)家對(duì)退休年齡都有不一樣的規(guī)定,從2018年開(kāi)始我國(guó)關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對(duì)“延遲退休”的態(tài)度,現(xiàn)從某地市民中隨機(jī)選取100人進(jìn)行調(diào)查,調(diào)查情況如下表:

年齡段(單位:歲)

被調(diào)查的人數(shù)

贊成的人數(shù)

1)從贊成“延遲退休”的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)在被調(diào)查的人中,年齡低于35歲的人可以認(rèn)為“低齡人”,年齡不低于35歲的人可以認(rèn)為“非低齡人”,試作出是否贊成“延遲退休”與“低齡與否”的列聯(lián)表,并指出有無(wú)的把握認(rèn)為是否贊成“延遲退休”與“低齡與否”有關(guān),并說(shuō)明理由.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著共享單車的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走人大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮,某公司隨機(jī)抽取1000人對(duì)共享產(chǎn)品是否對(duì)日常生活有益進(jìn)行了問(wèn)卷調(diào)查,并對(duì)參與調(diào)查的1000人中的性別以及意見(jiàn)進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

總計(jì)

認(rèn)為共享產(chǎn)品對(duì)生活有益

認(rèn)為共享產(chǎn)品對(duì)生活無(wú)益

總計(jì)

1)求出表格中的值,并根據(jù)表中的數(shù)據(jù),判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為對(duì)共享產(chǎn)品的態(tài)度與性別有關(guān)系?

2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品對(duì)生活無(wú)益的人員中隨機(jī)抽取6人,再?gòu)?/span>6人中隨機(jī)抽取2人贈(zèng)送超市購(gòu)物券作為答謝,求恰有1人是女性的概率.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn),這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期,某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大荔縣某高中一社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖.將日均學(xué)習(xí)圍棋時(shí)不低于分鐘的學(xué)生稱為“圍棋迷”.

非圍棋迷

圍棋迷

合計(jì)

合計(jì)

1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

2)現(xiàn)在從參與本次抽樣調(diào)查的名學(xué)生的男同學(xué)里面,依據(jù)是否為圍棋迷,采用分層抽樣的方法抽取名學(xué)生參與圍棋知識(shí)競(jìng)賽,再?gòu)?/span>人中任選人參與知識(shí)競(jìng)賽的賽前保障工作.求選到的人恰好是一個(gè)“圍棋迷”和一個(gè)“非圍棋迷”的概率?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

①已知,則;

為空間四點(diǎn),若不構(gòu)成空間的一個(gè)基底,那么共面;

③已知,則與任何向量都不構(gòu)成空間的一個(gè)基底;

④若共線,則所在直線或者平行或者重合.

正確的結(jié)論的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】全世界越來(lái)越關(guān)注環(huán)境保護(hù)問(wèn)題,某監(jiān)測(cè)站點(diǎn)于2018年1月某日起連續(xù)天監(jiān)測(cè)空氣質(zhì)量指數(shù)(),數(shù)據(jù)統(tǒng)計(jì)如下:

空氣質(zhì)量指數(shù)()

空氣質(zhì)量等級(jí)

空氣優(yōu)

空氣良

輕度污染

中度污染

重度污染

天數(shù)

20

40

10

5

(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出,的值,并完成頻率分布直方圖;

(2)由頻率分布直方圖,求該組數(shù)據(jù)的眾數(shù)和中位數(shù);

(3)在空氣質(zhì)量指數(shù)分別屬于的監(jiān)測(cè)數(shù)據(jù)中,用分層抽樣的方法抽取天,再?gòu)闹腥我膺x取天,求事件“兩天空氣都為良”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則此棱錐可能是六棱錐

B.四棱錐的四個(gè)側(cè)面都可以是直角三角形

C.有兩個(gè)平面互相平行,其余各面都是梯形的多面體是棱臺(tái)

D.棱臺(tái)的各側(cè)棱延長(zhǎng)后不一定交于一點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案