15.一個圓錐的側(cè)面展開圖是圓心角為$\frac{4}{3}π$,半徑為18的扇形,則這個圓錐的體積為$288\sqrt{5}π$.

分析 利用圓錐的側(cè)面展開圖中扇形的弧長等于圓錐底面的周長可得底面半徑,進而求出圓錐的高,代入圓錐體積公式,可得答案.

解答 解:設(shè)此圓錐的底面半徑為r,由題意,得
2πr=$\frac{4}{3}π$×18,
解得r=12.
故圓錐的高h=$\sqrt{{18}^{2}-{12}^{2}}$=$6\sqrt{5}$,
∴圓錐的體積V=$\frac{1}{3}$πr2h=288$\sqrt{5}π$,
故答案為:$288\sqrt{5}π$.

點評 本題考查了圓錐的計算,圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.本題就是把扇形的弧長等于圓錐底面周長作為相等關(guān)系,列方程求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)$y=\frac{1}{\sqrt{{-x}^{2}+2x+3}}$的單調(diào)減區(qū)間是(  )
A.(1,3)B.(-∞,1)C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在“①高一數(shù)學課本中的難題;②所有的正三角形; ③方程x2-4=0的實數(shù)解”中,能夠表示成集合的是( 。
A.B.C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=$\frac{\sqrt{3}}{2}$cos2ωx-sinωxcosωx+$\frac{\sqrt{3}}{2}$(ω>0)的圖象與直線y=m(m>0)相切,并且相鄰兩切點的橫坐標相差2π.
(Ⅰ)求ω和m的值;
(Ⅱ)△ABC中,角A,B,C的對邊分別是a,b,c,若角A滿足f(A)=-$\frac{\sqrt{3}}{2}$,且a=4,b+c=6,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知直線l1經(jīng)過不同兩點A(3,a)、B(a-2,3),直線l2經(jīng)過不同兩點A(3,a)、C(6,5),且l1⊥l2,則實數(shù)a的值是( 。
A.0B.5C.-5D.0或5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知拋物線y=-$\frac{1}{4}$x2的焦點為F,則過F的最短弦長為(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖正方形ABCD的邊長為ABCD的邊長為$2\sqrt{2}$,四邊形BDEF是平行四邊形,BD與AC交于點G,O為GC的中點,$FO=\sqrt{3},且FO⊥$平面ABCD.
(I)求證:AE∥平面BCF;
(Ⅱ)若$FO=\sqrt{3}$,求證CF⊥平面AEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.定義在(0,+∞)上的函數(shù)f(x),對于任意的m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,當x>1時,f(x)<0.
(1)求證:1是函數(shù)f(x)的零點;
(2)求證:f(x)是(0,+∞)上的減函數(shù);
(3)當$f(2)=\frac{1}{2}$時,解不等式f(ax+4)>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線過點(2,$\sqrt{3}$),則雙曲線的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步練習冊答案