分析 由已知中正三棱柱ABC-A1B1C1(底面是正三角形的直棱柱為正三棱柱)的每條棱長均為2,E、F分別是BC、A1C1的中點,可以建立空間坐標系,求出E,F(xiàn)兩點的坐標后,代入空間兩點間的距離公式,即可得到答案.
解答 解:以E為坐標原點,以EC,EA和豎直向上的方向分別為X,Y,Z軸的正方向建立坐標系,
∵E是BC的中點,
則E(0,0,0),A(0,$\sqrt{3}$,0),C(1,0,0)
A1(0,$\sqrt{3}$,2),C1(1,0,2)
F是A1C1的中點,則F點的坐標為($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,2)
則|EF|=$\sqrt{(\frac{1}{2})^{2}+({\frac{\sqrt{3}}{2})}^{2}+{2}^{2}}$=$\sqrt{5}$.
故答案為:$\sqrt{5}$.
點評 本題考查的知識點是空間點、線、面的距離,其中建立坐標系,求出E,F(xiàn)兩點的坐標,是解答本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 最大值1 | B. | 最大值$\frac{3}{2}$ | C. | 最小值$\frac{3}{2}$ | D. | 最小值1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com