對(duì)于給定數(shù)列,如果存在實(shí)常數(shù)使得對(duì)于任意都成立,我們稱數(shù)列是 “M類數(shù)列”.
(1)若,,,數(shù)列、是否為“M類數(shù)列”?若是,指出它對(duì)應(yīng)的實(shí)常數(shù),若不是,請(qǐng)說(shuō)明理由;
(2)證明:若數(shù)列是“M類數(shù)列”,則數(shù)列也是“M類數(shù)列”;
(3)若數(shù)列滿足,,為常數(shù).求數(shù)列前項(xiàng)的和.并判斷是否為“M類數(shù)列”,說(shuō)明理由;
(4)根據(jù)對(duì)(2)(3)問(wèn)題的研究,對(duì)數(shù)列的相鄰兩項(xiàng)、,提出一個(gè)條件或結(jié)論與“M類數(shù)列”概念相關(guān)的真命題,并探究其逆命題的真假.
(1)是,(2)(3)(4)證明略
(1)因?yàn)?img width=68 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/112/48712.gif">則有
故數(shù)列是“M類數(shù)列”, 對(duì)應(yīng)的實(shí)常數(shù)分別為. ……………………………2分
因?yàn)?img width=63 height=25 src="http://thumb.zyjl.cn/pic1/1899/sx/95/48695.gif">,則有
故數(shù)列是“M類數(shù)列”, 對(duì)應(yīng)的實(shí)常數(shù)分別為. ……………………………4分
(2)證明:若數(shù)列是“M類數(shù)列”, 則存在實(shí)常數(shù),
使得對(duì)于任意都成立,
且有對(duì)于任意都成立, …………………………………………6分
因此對(duì)于任意都成立,
故數(shù)列也是“M類數(shù)列”. …………………………………………8分
對(duì)應(yīng)的實(shí)常數(shù)分別為. ……………………………………………………………9分
(3)因?yàn)? 則有,,
,
故數(shù)列前項(xiàng)的和
++++
………………11分
若數(shù)列是“M類數(shù)列”, 則存在實(shí)常數(shù)
使得對(duì)于任意都成立,
且有對(duì)于任意都成立,
因此對(duì)于任意都成立,
而,且
則有對(duì)于任意都成立,可以得到,
(1)當(dāng)時(shí),,,,經(jīng)檢驗(yàn)滿足條件。
(2)當(dāng) 時(shí),,,經(jīng)檢驗(yàn)滿足條件。
因此當(dāng)且僅當(dāng)或,時(shí),數(shù)列也是“M類數(shù)列”。 對(duì)應(yīng)的實(shí)常數(shù)分別為, 或. ………………………………………………………………14分
(4)命題一:若數(shù)列是“M類數(shù)列”,則數(shù)列也是“M類數(shù)列”.
逆命題:若數(shù)列是“M類數(shù)列”,則數(shù)列也是“M類數(shù)列”.
當(dāng)且僅當(dāng)數(shù)列是常數(shù)列、等比數(shù)列時(shí),逆命題是正確的.
命題二:若數(shù)列是等比數(shù)列,則數(shù)列、、、 是“M類數(shù)列”
逆命題:若數(shù)列、、、是“M類數(shù)列” 則數(shù)列 是等比數(shù)列.逆命題是正確的.
命題三:若數(shù)列是“M類數(shù)列”, 則有或.
逆命題:若或,則數(shù)列是“M類數(shù)列”
若,當(dāng)且僅當(dāng)時(shí)逆命題是正確的.
若,當(dāng)且僅當(dāng)時(shí)逆命題是正確的.
(命題給出2分,逆命題寫出2分,說(shuō)明逆命題真假2分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于給定數(shù)列,如果存在實(shí)常數(shù),使得對(duì)于任意都成立,我們稱數(shù)列是 “M類數(shù)列”.
(I)若,,,數(shù)列、是否為“M類數(shù)列”?
若是,指出它對(duì)應(yīng)的實(shí)常數(shù),若不是,請(qǐng)說(shuō)明理由;
(II)若數(shù)列滿足,,為常數(shù).
求數(shù)列前項(xiàng)的和;
是否存在實(shí)數(shù),使得數(shù)列是“M類數(shù)列”,如果存在,求出;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省高考?jí)狠S理科數(shù)學(xué)試卷(解析版) 題型:解答題
對(duì)于給定數(shù)列,如果存在實(shí)常數(shù)使得對(duì)于任意都成立,我們稱數(shù)列是“數(shù)列”.
(Ⅰ)若,,,數(shù)列、是否為“數(shù)列”?若是,指出它對(duì)應(yīng)的實(shí)常數(shù),若不是,請(qǐng)說(shuō)明理由;
(Ⅱ)證明:若數(shù)列是“數(shù)列”,則數(shù)列也是“數(shù)列”;
(Ⅲ)若數(shù)列滿足,,為常數(shù).求數(shù)列前項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省高三第三次月考文科數(shù)學(xué)試卷 題型:解答題
(本小題滿分13分)對(duì)于給定數(shù)列,如果存在實(shí)常數(shù),使得對(duì)于任意都成立,我們稱數(shù)列是 “M類數(shù)列”.
(I)若,,,數(shù)列、是否為“M類數(shù)列”?若是,指出它對(duì)應(yīng)的實(shí)常數(shù),若不是,請(qǐng)說(shuō)明理由;
(II)若數(shù)列滿足,.
(1)求數(shù)列前項(xiàng)的和.
(2)已知數(shù)列是 “M類數(shù)列”,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆河北省高三下學(xué)期理科數(shù)學(xué)試卷 題型:解答題
對(duì)于給定數(shù)列,如果存在實(shí)常數(shù),使得對(duì)于任意都成立,我們稱數(shù)列是 “類數(shù)列”.
(Ⅰ)已知數(shù)列是 “類數(shù)列”且,求它對(duì)應(yīng)的實(shí)常數(shù)的值;
(Ⅱ)若數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.并判斷是否為“類數(shù)列”,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆北京市高二上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題滿分14分)對(duì)于給定數(shù)列,如果存在實(shí)常數(shù),使得對(duì)于任意都成立,我們稱數(shù)列是 “M類數(shù)列”.
(I)若,,,數(shù)列、是否為“M類數(shù)列”?若是,指出它對(duì)應(yīng)的實(shí)常數(shù),若不是,請(qǐng)說(shuō)明理由;
(II)若數(shù)列滿足,.
(1) 求數(shù)列前項(xiàng)的和.(2)已知數(shù)列是 “M類數(shù)列”,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com