【題目】在一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分,如果前兩次得分之和超過(guò)3分就停止投籃;否則投第3次,某同學(xué)在處的抽中率,在處的抽中率為,該同學(xué)選擇現(xiàn)在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:

0

2

3

4

5

0.03

1的值;

2求隨機(jī)變量的數(shù)學(xué)期望;

3試比較該同學(xué)選擇上述方式投籃得分超過(guò)3分與選擇都在處投籃得分超過(guò)3分的概率的大小.

【答案】12;3該同學(xué)選擇上述方式投籃得分超過(guò)分的概率大于選擇都在處投籃得分超過(guò)分的概率.

【解析】

試題分析:1根據(jù),解得;2根據(jù)相互獨(dú)立事件概率計(jì)算公式,計(jì)算得,由此計(jì)算得期望3表示事件該同學(xué)在處投第一球,以后都在處投,得分超過(guò),用表示事件該同學(xué)都在處投,得分超過(guò),計(jì)算得,.

試題解析:

1由題意可知,對(duì)應(yīng)的事件為三次投籃沒(méi)有一次投中

,

,解得;

2根據(jù)題意,

,

3表示事件該同學(xué)在處投第一球,以后都在處投,得分超過(guò)3分,用表示事件該同學(xué)都在處投,得分超過(guò)3分,

,,

即該同學(xué)選擇都在處投籃得分超過(guò)3分的概率的大于該同學(xué)在處投第一球,以后都在處投,得分超過(guò)3分的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,底面、邊長(zhǎng)為的菱形,又,且,點(diǎn)分別是棱的中點(diǎn).

(1證明:平面;

(2)證明:平面平面;

(3)求點(diǎn)到平面的距離.[

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx(a0)的導(dǎo)函數(shù)f(x)=-2x+7,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(n,Sn)(nN*)均在函數(shù)y=f(x)的圖象上,求數(shù)列{an}的通項(xiàng)公式及Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的對(duì)稱(chēng)軸為,.

1)求函數(shù)的最小值及取得最小值時(shí)的值;

2)試確定的取值范圍,使至少有一個(gè)實(shí)根;

3)當(dāng)時(shí),,對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)絡(luò)購(gòu)物已經(jīng)被大多數(shù)人接受,隨著時(shí)間的推移,網(wǎng)絡(luò)購(gòu)物的人越來(lái)越多,然而也有部分人對(duì)網(wǎng)絡(luò)購(gòu)物的質(zhì)量和信譽(yù)產(chǎn)生懷疑。對(duì)此,某新聞媒體進(jìn)行了調(diào)查,在所有參與調(diào)查的人中,持“支持”和“不支持”態(tài)度的人數(shù)如下表所示:

年齡 態(tài)度

支持

不支持

20歲以上50歲以下

800

200

50歲以 (含50歲)

100

300

(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個(gè)人,已知從持“支持”態(tài)度的人中抽取了9人,求的值;

(2)是否有99.9%的把握認(rèn)為支持網(wǎng)絡(luò)購(gòu)物與年齡有關(guān)?

參考數(shù)據(jù):

,其中,

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,側(cè)面是邊長(zhǎng)為2的等邊三角形,點(diǎn)的中點(diǎn),且平面平面

I求異面直線(xiàn)所成角的余弦值;

II若點(diǎn)在線(xiàn)段上移動(dòng),是否存在點(diǎn)使平面與平面所成的角為?若存在,指出點(diǎn)的位置,否則說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線(xiàn)在原點(diǎn)處有公共切線(xiàn)

I為函數(shù)的極大值點(diǎn),求的單調(diào)區(qū)間表示

II,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量X~N(μ,σ2),且其正態(tài)曲線(xiàn)在(-∞,80)上是增函數(shù),在(80,+∞)上為減函數(shù),且P(72≤X≤88)=0.682 6.

(1)求參數(shù)μ,σ的值;

(2)求P(64<X≤72).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊的一角開(kāi)辟為水果園種植桃樹(shù),已知角,的長(zhǎng)度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆

1若圍墻 長(zhǎng)度為米,如何圍可使得三角形地塊的面積最大?

2已知段圍墻高米,段圍墻高米,造價(jià)均為每平方米若圍圍墻用了元,問(wèn)如何圍可使竹籬笆用料最。

查看答案和解析>>

同步練習(xí)冊(cè)答案