【題目】垃圾種類可分為可回收垃圾,干垃圾,濕垃圾,有害垃圾,為調(diào)查中學(xué)生對垃圾分類的了解程度某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請他們指出生活中若干項(xiàng)常見垃圾的種類,把能準(zhǔn)確分類不少于3項(xiàng)的稱為“比較了解”少于三項(xiàng)的稱為“不太了解”調(diào)查結(jié)果如下:
0項(xiàng) | 1項(xiàng) | 2項(xiàng) | 3項(xiàng) | 4項(xiàng) | 5項(xiàng) | 5項(xiàng)以上 | |
男生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
女生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列聯(lián)表并判斷是否有95%的把握認(rèn)為了解垃圾分類與性別有關(guān)?
比較了解 | 不太了解 | 合計(jì) | |
男生 | __________ | __________ | __________ |
女生 | __________ | __________ | __________ |
合計(jì) | __________ | __________ | __________ |
(2)從能準(zhǔn)確分類不少于3項(xiàng)的高中生中,按照男、女生采用分層抽樣的方法抽取9人的樣本.
(i)求抽取的女生和男生的人數(shù);
(ii)從9人的樣本中隨機(jī)抽取兩人,求男生女生都有被抽到的概率.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
【答案】(1)列聯(lián)表見解析,沒有的把握認(rèn)為了解垃圾分類與性別有關(guān);(2)(i)女生2人,男生7人,(ii);
【解析】
(1)根據(jù)題中數(shù)據(jù)完善題中的列聯(lián)表,并計(jì)算出的觀測值,利用臨界值表得出犯錯誤的概率,即可對題中結(jié)論的正誤進(jìn)行判斷;
(2)利用分層抽樣思想得出所抽取的男生人數(shù)為,女生人數(shù)為,將樣本中的名女生為、,名男生為、、、、、、,列出所有的基本事件,然后利用古典概型的概率公式可求出所求事件的概率.
(1)根據(jù)題意填得列聯(lián)表如下,
比較了解 | 不太了解 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
所以,
所以沒有的把握認(rèn)為了解垃圾分類與性別有關(guān);
(2)(i)抽取的女生人數(shù)是(人),男生人數(shù)是(人);
(ii)記抽取的兩人男女都有為事件,記樣本中的名女生為、,名男生為、、、、、、.
從這9人中隨機(jī)抽取兩人,基本事件分別為:
、、、、、、、、
、、、、、、、
、、、、、、
、、、、、
、、、、
、、、、、共種;
男生女生都有被抽到的基本事件為、、、、、、、、、、、、、,共種,
故所求的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生興趣小組隨機(jī)調(diào)查了某市100天中每天的空氣質(zhì)量等級和當(dāng)天到某公園鍛煉的人次,整理數(shù)據(jù)得到下表(單位:天):
鍛煉人次 空氣質(zhì)量等級 | [0,200] | (200,400] | (400,600] |
1(優(yōu)) | 2 | 16 | 25 |
2(良) | 5 | 10 | 12 |
3(輕度污染) | 6 | 7 | 8 |
4(中度污染) | 7 | 2 | 0 |
(1)分別估計(jì)該市一天的空氣質(zhì)量等級為1,2,3,4的概率;
(2)求一天中到該公園鍛煉的平均人次的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(3)若某天的空氣質(zhì)量等級為1或2,則稱這天“空氣質(zhì)量好”;若某天的空氣質(zhì)量等級為3或4,則稱這天“空氣質(zhì)量不好”.根據(jù)所給數(shù)據(jù),完成下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表,判斷是否有95%的把握認(rèn)為一天中到該公園鍛煉的人次與該市當(dāng)天的空氣質(zhì)量有關(guān)?
人次≤400 | 人次>400 | |
空氣質(zhì)量好 | ||
空氣質(zhì)量不好 |
附:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求函數(shù)的極值;
(2)若函數(shù)在區(qū)間內(nèi)存在零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域上的最大值為,求實(shí)數(shù)的值;
(2)設(shè)函數(shù),當(dāng)時,對任意的恒成立,求滿足條件的實(shí)數(shù)的最小整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c,d∈R,矩陣A= 的逆矩陣A-1=.若曲線C在矩陣A對應(yīng)的變換作用下得到直線y=2x+1,求曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年新年伊始,新型冠狀病毒來勢洶洶,疫情使得各地學(xué)生在寒假結(jié)束之后無法返校,教育部就此提出了線上教學(xué)和遠(yuǎn)程教學(xué),停課不停學(xué)的要求也得到了家長們的贊同.各地學(xué)校開展各式各樣的線上教學(xué),某地學(xué)校為了加強(qiáng)學(xué)生愛國教育,擬開設(shè)國學(xué)課,為了了解學(xué)生喜歡國學(xué)是否與性別有關(guān),該學(xué)校對100名學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡國學(xué) | 不喜歡國學(xué) | 合計(jì) | |
男生 | 20 | 50 | |
女生 | 10 | ||
合計(jì) | 100 |
(1)請將上述列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為喜歡國學(xué)與性別有關(guān)系?
(2)針對問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡國學(xué)的人中按分層抽樣的方法隨機(jī)抽取6人成立國學(xué)宣傳組,并在這6人中任選2人作為宣傳組的組長,求選出的兩人均為女生的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn),、兩點(diǎn)分別是橢圓的上、下頂點(diǎn),是等腰直角三角形,延長交橢圓于點(diǎn),且的周長為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上異于、的動點(diǎn),直線、與直線分別相交于、兩點(diǎn),點(diǎn),試問:外接圓是否恒過軸上的定點(diǎn)(異于點(diǎn))?若是,求該定點(diǎn)坐標(biāo);若否,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在脫貧攻堅(jiān)中,某市教育局定點(diǎn)幫扶前進(jìn)村戶貧困戶.駐村工作隊(duì)對這戶村民的貧困程度以及家庭平均受教育程度進(jìn)行了調(diào)査,并將該村貧困戶按貧困程度分為“絕對貧困戶”與“相對貧困戶”,同時按家庭平均受教育程度分為“家庭平均受教育年限年”與“家庭平均受教育年限年”,具體調(diào)査結(jié)果如下表所示:
平均受教育年限年 | 平均受教育年限年 | 總計(jì) | |
絕對貧困戶 | 10 | 40 | 50 |
相對貧困戶 | 20 | 30 | 50 |
總計(jì) | 30 | 70 | 100 |
(1)為了參加扶貧辦公室舉辦的貧困戶“談心談話”活動,現(xiàn)通過分層抽樣從“家庭平均受教育年限年”的戶貧困戶中任意抽取戶,再從所抽取的戶中隨機(jī)抽取戶參加“談心談話”活動,求至少有戶是絕對貧困戶的概率;
(2)根據(jù)上述表格判斷:是否有的把握認(rèn)為貧困程度與家庭平均受教育程度有關(guān)?
參考公式:
參考數(shù)據(jù):
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓的左頂點(diǎn)作斜率為2的直線,與橢圓的另一個交點(diǎn)為,與軸的交點(diǎn)為,已知.
(1)求橢圓的離心率;
(2)設(shè)動直線與橢圓有且只有一個公共點(diǎn),且與直線相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com