如圖,設(shè)拋物線C的方程為y2=4x,O為坐標(biāo)原點(diǎn),P為拋物線的準(zhǔn)線與其對稱軸的交點(diǎn),過焦點(diǎn)F且垂直于x軸的直線交拋物線于M、N兩點(diǎn),若直線PM與ON相交于點(diǎn)Q,則cos∠MQN=
-
10
10
-
10
10
分析:由物線C的方程為y2=4x,知P(-1,0),F(xiàn)(1,0),由焦點(diǎn)F且垂直于x軸的直線交拋物線于M、N兩點(diǎn),知M(1,2),N(1,-2),所以直線PM的方程為y=x+1,直線ON的方程為y=-2x,解方程組
y=x+1
y=-2x
,得Q(-
1
3
2
3
).所以
QM
=(
4
3
,
4
3
)
,
QN
=(
4
3
 ,-
8
3
)
,由此能求出cos∠MQN.
解答:解:如圖,∵物線C的方程為y2=4x,O為坐標(biāo)原點(diǎn),
P為拋物線的準(zhǔn)線與其對稱軸的交點(diǎn),
∴P(-1,0),
F(1,0),
∵焦點(diǎn)F且垂直于x軸的直線交拋物線于M、N兩點(diǎn),
∴M(1,2),N(1,-2),
∵直線PM過P(-1,0),M(1,2),
∴直線PM的方程為
y
x+1
=1
,即y=x+1,
∵直線NO過點(diǎn)O(0,0),N(1,-2),
∴直線ON的方程是
y
x
=
-2
1
,即y=-2x,
∴解方程組
y=x+1
y=-2x
,得Q(-
1
3
,
2
3
).
QM
=(
4
3
,
4
3
)
,
QN
=(
4
3
 ,-
8
3
)
,
∴cos∠MQN=cos<
QM
QN
>=
4
3
×
4
3
+
4
3
×(-
8
3
)
4
3
2
 ×
4
3
5
=-
10
10

故答案為:-
10
10
點(diǎn)評:本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,綜合性強(qiáng),難度大,是高考的重點(diǎn),易錯(cuò)點(diǎn)是拋物線知識體系不牢固.本題具體涉及到軌跡方程的求法及直線與拋物線的相關(guān)知識,解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•韶關(guān)一模)設(shè)拋物線C的方程為x2=4y,M(x0,y0)為直線l:y=-m(m>0)上任意一點(diǎn),過點(diǎn)M作拋物線C的兩條切線MA,MB,切點(diǎn)分別為A,B.
(1)當(dāng)M的坐標(biāo)為(0,-1)時(shí),求過M,A,B三點(diǎn)的圓的方程,并判斷直線l與此圓的位置關(guān)系;
(2)求證:直線AB恒過定點(diǎn)(0,m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C的方程為x2=4y,M為直線l:y=-m(m>0)上任意一點(diǎn),過點(diǎn)M作拋物線C的兩條切線MA,MB,切點(diǎn)分別為A,B.
(Ⅰ)當(dāng)M的坐標(biāo)為(0,-l)時(shí),求過M,A,B三點(diǎn)的圓的標(biāo)準(zhǔn)方程,并判斷直線l與此圓的位置關(guān)系;
(Ⅱ)當(dāng)m變化時(shí),試探究直線l上是否存在點(diǎn)M,使MA⊥MB?若存在,有幾個(gè)這樣的點(diǎn),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,設(shè)拋物線C的方程為y2=4x,O為坐標(biāo)原點(diǎn),P為拋物線的準(zhǔn)線與其對稱軸的交點(diǎn),過焦點(diǎn)F且垂直于x軸的直線交拋物線于M、N兩點(diǎn),若直線PM與ON相交于點(diǎn)Q,則cos∠MQN=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省龍巖市一級達(dá)標(biāo)學(xué)校聯(lián)盟高中高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,設(shè)拋物線C的方程為y2=4x,O為坐標(biāo)原點(diǎn),P為拋物線的準(zhǔn)線與其對稱軸的交點(diǎn),過焦點(diǎn)F且垂直于x軸的直線交拋物線于M、N兩點(diǎn),若直線PM與ON相交于點(diǎn)Q,則cos∠MQN=   

查看答案和解析>>

同步練習(xí)冊答案