4.已知兩數(shù)19和89,求中間插入多少個數(shù)時,能使它們與這兩個數(shù)成等差數(shù)列,且這個數(shù)列各項之和為1350.

分析 設(shè)中間插入n個數(shù),公差為d,由等差數(shù)列的通項公式和求和公式可得n和d的方程組,解方程組可得.

解答 解:設(shè)中間插入n個數(shù),則這n+2個數(shù)構(gòu)成公差為d的等差數(shù)列,
∴必有19+(n+1)d=89,且19(n+2)+$\frac{(n+2)(n+1)}{2}$d=1350,
解關(guān)于n和d的方程組可得n=23
故中間插入23個數(shù)時滿足題意.

點評 本題考查等差數(shù)列的性質(zhì),涉及等差數(shù)列的通項公式和求和公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知p:-3≤x≤8,q:1-m≤x≤1+m.命題“若p,則q”的逆命題為假命題,逆否命題為真命題.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若不等式32x-k•3x+4≥0對于任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x∈[-$\frac{π}{4}$,$\frac{π}{3}$],函數(shù)y=tan2x-tan(π-x)+1的值域是[$\frac{3}{4}$,4+$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)函數(shù)f(x)=1+$\frac{{x}^{2}}{1+{x}^{2}}$,則f(2)=$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求值:sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan$\frac{25π}{4}$+sin$\frac{7π}{3}$cos$\frac{13π}{6}$-cos$\frac{5π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列函數(shù)的定義域:
(1)y=lg(x+1)+$\frac{3{x}^{2}}{\sqrt{1-x}}$;
(2)y=log(x-2)(5-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若直線的傾斜角為α,則直線的斜率為tanα或不存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知tanα=$\frac{3}{4}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),求:
(1)$\frac{sin(π+α)-sin(\frac{3π}{2}+α)}{cos(3π-α)+2}$;
(2)cos(-π-α)

查看答案和解析>>

同步練習(xí)冊答案