已知圓O:x2+y2=4,點(diǎn)P為直線l:x=4上的動(dòng)點(diǎn).
(I)若從P到圓O的切線長為數(shù)學(xué)公式,求P點(diǎn)的坐標(biāo)以及兩條切線所夾劣弧長;
(II)若點(diǎn)A(-2,0),B(2,0),直線PA,PB與圓O的另一個(gè)交點(diǎn)分別為M,N,求證:直線MN經(jīng)過定點(diǎn)(1,0).

解:根據(jù)題意,設(shè)P(4,t).
(I)設(shè)兩切點(diǎn)為C,D,則OC⊥PC,OD⊥PD,
由題意可知|PO|2=|OC|2+|PC|2,即,(2分)
解得t=0,所以點(diǎn)P坐標(biāo)為(4,0).(3分)
在Rt△POC中,易得∠POC=60°,所以∠DOC=120°.(4分)
所以兩切線所夾劣弧長為.(5分)
(II)設(shè)M(x1,y1),N(x2,y2),Q(1,0),
依題意,直線PA經(jīng)過點(diǎn)A(-2,0),P(4,t),
可以設(shè),(6分)
和圓x2+y2=4聯(lián)立,得到,
代入消元得到,(t2+36)x2+4t2x+4t2-144=0,(7分)
因?yàn)橹本AP經(jīng)過點(diǎn)A(-2,0),M(x1,y1),所以-2,x1是方程的兩個(gè)根,
所以有,,(8分)
代入直線方程得,.(9分)
同理,設(shè),聯(lián)立方程有
代入消元得到(4+t2)x2-4t2x+4t2-16=0,
因?yàn)橹本BP經(jīng)過點(diǎn)B(2,0),N(x2,y2),所以2,x2是方程的兩個(gè)根,,,
代入得到.(11分)
若x1=1,則t2=12,此時(shí)
顯然M,Q,N三點(diǎn)在直線x=1上,即直線MN經(jīng)過定點(diǎn)Q(1,0)(12分)
若x1≠1,則t2≠12,x2≠1,
所以有,(13分)
所以kMQ=kNQ,所以M,N,Q三點(diǎn)共線,
即直線MN經(jīng)過定點(diǎn)Q(1,0).
綜上所述,直線MN經(jīng)過定點(diǎn)Q(1,0).(14分)
分析:根據(jù)題意,設(shè)P(4,t).
(I)設(shè)兩切點(diǎn)為C,D,則OC⊥PC,OD⊥PD,由題意可知|PO|2=|OC|2+|PC|2,即,解得t=0,所以點(diǎn)P坐標(biāo)為(4,0),由此能夠求出兩切線所夾劣弧長.
(II)設(shè)M(x1,y1),N(x2,y2),Q(1,0),依題意,直線PA經(jīng)過點(diǎn)A(-2,0),P(4,t),可以設(shè),和圓x2+y2=4聯(lián)立,代入消元得到,(t2+36)x2+4t2x+4t2-144=0,因?yàn)橹本AP經(jīng)過點(diǎn)A(-2,0),M(x1,y1),所以-2,x1是方程的兩個(gè)根,然后由根與系數(shù)的關(guān)系進(jìn)行求解.
點(diǎn)評(píng):本題考查直線和圓的位置關(guān)系,具有一定的難度,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B( x0,y0)是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線段CD上是否存在點(diǎn)T(t,0),使|BT|=|AT|,若存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=9,定點(diǎn) A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程
(2)設(shè)E、F分別是圓O和直線l上任意一點(diǎn),求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)一點(diǎn),過點(diǎn)P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1,點(diǎn)P在直線x=
3
上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案