如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面
底面,且,、分別為、的中點.

(1)求證:平面;   
(2)求證:面平面;
(3)在線段上是否存在點,使得二面角的余弦值為?說明理由.

(1)詳見解析;(2)詳見解析;(3)線段上存在點,使得二面角的余弦值為.

解析試題分析:(1)連接經(jīng)過點,利用中位線得到,再由直線與平面平行的判定定理得到
平面;(2)利用平面與平面垂直的性質(zhì)定理結(jié)合側(cè)面底面得到平面,從而得到,再由勾股定理證明,結(jié)合直線與平面垂直的判定定理證明平面,最后利用平面與平面垂直的判定定理得到平面平面;(3)取的中點,連接、,
利用平面與平面垂直的性質(zhì)定理證明平面,然后以點為坐標(biāo)原點,、、所在直線分別為軸、軸、軸建立空間直角坐標(biāo)系,利用空間向量法解決題中二面角問題.
(1)證明:連接,由正方形性質(zhì)可知,相交于的中點,
也為中點,中點.
所以在中,,
平面,平面
所以平面;
(2)證明:因為平面平面,平面  
為正方形,,平面,所以平面
平面,所以.
,所以是等腰直角三角形,且,即.
,且、

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐P—ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點.已知PA⊥AC,PA=6,BC=8,DF=5.

求證:(1)直線PA∥平面DFE;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在平行四邊形中,.將沿折起,使得平面平面,如圖.

(1)求證: ;
(2)若中點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分別是棱A1B1、AA1的中點,點F在棱AB上,且
(1)求證:EF∥平面BDC1;  
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)(2011•福建)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,點E在線段AD上,且CE∥AB.

(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,,是正三角形,平面平面
(1)求證:
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,側(cè)面PAD底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點.
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求點A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,AC,,點M在線段PD上.

(1)求證:平面PAC;
(2)若二面角M-AC-D的大小為,試確定點M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱柱是直棱柱,.點分別為的中點.

(1)求證:平面;
(2)求點到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案