(本小題共12分)
如圖,在正三棱柱ABC—A1B1C1中,點(diǎn)D是棱AB的中點(diǎn),BC=1,AA1=
(1)求證:BC1//平面A1DC;
(2)求二面角D—A1C—A的大小
(1)略
(2)設(shè)二面角D—A1C—A的大小為
【解析】(I)證明:連結(jié)AC1交A1C于點(diǎn)G,連結(jié)DG,
在正三棱柱ABC—A1B1C1中,四邊形ACC1A1是平行四邊形,
|
…………2分
…………4分
(II)解法一: 過點(diǎn)D作交AC于E,過點(diǎn)D作交A1C于F,連結(jié)EF。
|
是二面角D—A1C—A的平面角,…………8分
在直角三角形ADC中,
同理可求:
…………12分
解法二:過點(diǎn)A作交BC于O,過點(diǎn)O作交B1C1于E。
因?yàn)槠矫?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052401000425006126/SYS201205240101184687508702_DA.files/image026.png">
所以,分別以CB、OE、OA所在的直線為建立空間直角坐標(biāo)系,
如圖所示,因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052401000425006126/SYS201205240101184687508702_DA.files/image029.png">是等邊三角形,所以O(shè)為BC的中點(diǎn),則
|
則
取……8分
可求平面ACA1的一個(gè)法向量為…………10分
設(shè)二面角D—A1C—A的大小為
…………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
. (本小題共12分)已知橢圓E:的焦點(diǎn)坐標(biāo)為(),點(diǎn)M(,)在橢圓E上(1)求橢圓E的方程;(2)O為坐標(biāo)原點(diǎn),⊙的任意一條切線與橢圓E有兩個(gè)交點(diǎn),且,求⊙的半徑。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第三次模擬考試文科數(shù)學(xué)試卷 題型:解答題
(本小題共12分)如圖,已知⊥平面,∥,是正三角形,,且是的中點(diǎn)
(1)求證:∥平面;
(2)求證:平面BCE⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第三次模擬考試文科數(shù)學(xué)試卷 題型:解答題
(本小題共12分)某中學(xué)的高二(1)班男同學(xué)有名,女同學(xué)有名,老師按照分層抽樣的方法組建了一個(gè)人的課外興趣小組.
(Ⅰ)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(Ⅱ)經(jīng)過一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高一上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題共12分)已知函數(shù)
(1)求函數(shù)圖象的對(duì)稱中心
(2)已知,,求證:.
(3)求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com