某城市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:

API
 

 

 

 

 

 

 

 
空氣質(zhì)量
 
優(yōu)
 

 
輕微污染
 
輕度污染
 
中度污染
 
中度重污染
 
重度污染
 
天數(shù)
 
4
 
13
 
18
 
30
 
9
 
11
 
15
 
 
記某企業(yè)每天由空氣污染造成的經(jīng)濟損失S(單位:元),空氣質(zhì)量指數(shù)API為ω。在區(qū)間[0,100]對企業(yè)沒有造成經(jīng)濟損失;在區(qū)間對企業(yè)造成經(jīng)濟損失成直線模型(當API為150時造成的 經(jīng)濟損失為500元,當API為200時,造成的經(jīng)濟損失為700元);當API大于300時造成的 經(jīng)濟損失為2000元;
(1)試寫出是S(ω)的表達式;
(2)試估計在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失S大于200元且不超過600元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認為該市本年空氣重度污染與供暖有關(guān)?
P(K2 ≥ k0)
 
0.25
 
0.15
 
0.10
 
0.05
 
0.025
 
0.010
 
0.005
 
0.001
 
k0
 
1.323
 
2.072
 
2.706
 
3.841
 
5.024
 
6.635
 
7.879
 
10.828
 

 

 
附:

 
 
非重度污染
 
重度污染
 
合計
 
供暖季
 
 
 
 
 
 
 
非供暖季
 
 
 
 
 
 
 
合計
 
 
 
 
 
100
 
 

(1)
(2)
(3)有95%的把握認為空氣重度污染與供暖有關(guān)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進行獎勵,規(guī)定:每位顧客從一個裝有4個標有面值的球的袋中一次性隨機摸出2個球,球上所標的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標的面值為50元,其余3個均為10元,求
①顧客所獲的獎勵額為60元的概率
②顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;
(2)商場對獎勵總額的預(yù)算是60000元,并規(guī)定袋中的4個球只能由標有面值10元和50元的兩種球組成,或標有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)(2011•重慶)某市公租房的房源位于A、B、C三個片區(qū),設(shè)每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的,求該市的任4位申請人中:
(Ⅰ)恰有2人申請A片區(qū)房源的概率;
(Ⅱ)申請的房源所在片區(qū)的個數(shù)的ξ分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某電視臺“挑戰(zhàn)60秒”活動規(guī)定上臺演唱:
(I)連續(xù)達到60秒可轉(zhuǎn)動轉(zhuǎn)盤(轉(zhuǎn)盤為八等分圓盤)一次進行抽獎,達到90秒可轉(zhuǎn)兩次,達到120秒可轉(zhuǎn)三次(獎金累加).

(2)轉(zhuǎn)盤指針落在I、II、III區(qū)依次為一等獎(500元)、二等獎(200元)、三等獎(100元),落在其它區(qū)域不獎勵.
(3)演唱時間從開始到三位評委中至少1人嗚啰為止,現(xiàn)有一演唱者演唱時間為100秒.
①求此人中一等獎的概率;
②設(shè)此人所得獎金為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市教育局為了了解高三學(xué)生體育達標情況,在某學(xué)校的高三學(xué)生體育達標成績中隨機抽取100個進行調(diào)研,按成績分組:第l組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示:

若要在成績較高的第3,4,5組中用分層抽樣抽取6名學(xué)生進行復(fù)查:
(1)已知學(xué)生甲和學(xué)生乙的成績均在第四組,求學(xué)生甲和學(xué)生乙至少有一人被選中復(fù)查的概率;
(2)在已抽取到的6名學(xué)生中隨機抽取3名學(xué)生接受籃球項目的考核,設(shè)第三組中有三名學(xué)生接受籃球項目的考核,求暑的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校組織了一次安全知識競賽,現(xiàn)隨機抽取20名學(xué)生的測試成績,如下表所示(不低于90分的測試成績稱為“優(yōu)秀成績”):

79
90
82
80
84
95
79
86
89
91
97
86
79
78
86
77
87
89
83
85
 
(1)若從這20人中隨機選取3人,求至多有1人是“優(yōu)秀成績”的概率;
(2)以這20人的樣本數(shù)據(jù)來估計整個學(xué)校的總體數(shù)據(jù),若從該校全體學(xué)生中(人數(shù)很多)任選3人,記表示抽到“優(yōu)秀成績”學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知5個乒乓球,其中3個新的,2個舊的,每次取1個,不放回的取兩次,  
求:(1)第一次取到新球的概率.
(2)第二次取到新球的概率.
(3)在第一次取到新球的條件下第二次取到新球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某電器商經(jīng)過多年的經(jīng)驗發(fā)現(xiàn)本店每個月售出的電冰箱的臺數(shù)ξ是一個隨機變量,它的分布列為P(ξ=i)=(i=1,2,…,12);設(shè)每售出一臺電冰箱,電器商獲利300元.如銷售不出,則每臺每月需花保管費100元.問電器商每月初購進多少臺電冰箱才能使月平均收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某示范性高中的校長推薦甲、乙、丙三名學(xué)生參加某大學(xué)自主招生考核測試,在本次考核中只有合格和優(yōu)秀兩個等級.若考核為合格,授予10分降分資格;考核為優(yōu)秀, 授予20分降分資格.假設(shè)甲、乙、丙考核為優(yōu)秀的概率分別為、,他們考核所得的等級相互獨立.
(1)求在這次考核中,甲、乙、丙三名學(xué)生至少有一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名學(xué)生所得降分之和為隨機變量ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案