A. | $[kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z)$ | B. | $[kπ+\frac{5π}{12},kπ+\frac{11π}{12}](k∈Z)$ | ||
C. | $[kπ-\frac{5π}{24},kπ+\frac{7π}{24}](k∈Z)$ | D. | $[kπ+\frac{7π}{24},kπ+\frac{19π}{24}](k∈Z)$ |
分析 由周期公式可求函數(shù)$y=2sin(2x+\frac{π}{6})$的周期T=$\frac{2π}{2}$=π,利用三角函數(shù)的圖象變換規(guī)律可求函數(shù)f(x)解析式,令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可得函數(shù)f(x)的單調(diào)遞增區(qū)間.
解答 解:∵函數(shù)$y=2sin(2x+\frac{π}{6})$的周期T=$\frac{2π}{2}$=π,
∴將函數(shù)$y=2sin(2x+\frac{π}{6})$的圖象向右平移$\frac{1}{4}$個(gè)周期后,所得圖象對(duì)應(yīng)的函數(shù)為f(x)=2sin[2(x-$\frac{π}{4}$)+$\frac{π}{6}$]=2sin(2x-$\frac{π}{3}$),
∴令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可得:kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$k∈Z,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為:[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.
故選:A.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)周期公式,三角函數(shù)圖象變換規(guī)律以及正弦函數(shù)的單調(diào)性,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | -4 | C. | -3 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com