【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為:

直線l的參數(shù)方程化為極坐標方程;

求直線l與曲線C交點的極坐標其中

【答案】1;(2,

【解析】

試題(1)首先消去參數(shù)方程的參數(shù),可把參數(shù)方程化為普通方程,然后利用公式可把直角坐標方程化為極坐標方程;(2)可把曲線的極坐標方程化為直角坐標方程,然后把直線與圓的直角坐標方程聯(lián)立解得交點坐標,再把交點的直角坐標化為極坐標,也可把直線與圓的兩個極坐標方程聯(lián)立方程組解得交點的極坐標.

試題解析:(1)將直線 為參數(shù))消去參數(shù),化為普通方程2

代入. 4

2)方法一:的普通方程為. 6

解得:8

所以交點的極坐標分別為:,. 10

方法二:由, 6

得:,又因為8

所以

所以交點的極坐標分別為:,. 10

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個結論:

①命題“,”的否定是“”;

②命題“若,則”的否定是“若,則”;

③命題“若,則”的否命題是“若,則”;

④若“是假命題,是真命題”,則命題,一真一假.

其中正確結論的個數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:函數(shù)f(x)x22mx1(2,+∞)上單調(diào)遞增;命題q:函數(shù)g(x)2x22(m2)x1的圖象恒在x軸上方,若pq為真,pq為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四面體中,,平面平面,,且.

(1)證明:平面;

(2)設為棱的中點,當四面體的體積取得最大值時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為2的正方體中, , , 分別是棱 , 的中點,點 分別在棱, 上移動,且.

(1)當時,證明:直線平面;

(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某公園內(nèi)有兩條道路,現(xiàn)計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知

(1)若綠化區(qū)域的面積為1,求道路的長度;

(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設),當為何值時,該計劃所需總費用最小?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是由容量為100的樣本得到的頻率分布直方圖.其中前4組的頻率成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設最大頻率為a,在之間的數(shù)據(jù)個數(shù)為b,則a,b的值分別為(

A.78

B.83

C.,78

D.,83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面四邊形ABCD,,,,將沿BD翻折到與面BCD垂直的位置.

證明:面ABC;

若E為AD中點,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三國時代數(shù)學家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為( )

A. 134 B. 67 C. 200 D. 250

查看答案和解析>>

同步練習冊答案