【題目】已知定義在R上的函數(shù)f(x)滿足:對(duì)任意都有,且當(dāng)x>0時(shí),.
(1)求的值,并證明為奇函數(shù);
(2)判斷函數(shù)的單調(diào)性,并證明;
(3)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);證明詳見(jiàn)解析(2)是增函數(shù),證明詳見(jiàn)解析;(3).
【解析】
(1)用賦值法,結(jié)合奇函數(shù)的定義進(jìn)行求解證明即可;
(2)運(yùn)用單調(diào)性的定義,結(jié)合已知進(jìn)行判斷證明即可;
(3)運(yùn)用函數(shù)的單調(diào)性和奇函數(shù)的性質(zhì),結(jié)合常變量分離法、換元法、構(gòu)造函數(shù)法進(jìn)行求解即可.
(1) 令 ,得 ,
所以 .
證明:令 ,得 ,
所以,
所以為奇函數(shù);
(2)設(shè)x2>x1,所以.
由,
因?yàn)楫?dāng)x>0時(shí),,所以,
∴是增函數(shù);
(3) 由題知:,
又 是定義在上的增函數(shù),
所以 對(duì)任意 恒成立,
所以 ,
所以 ,
令 ,,則 ,
所以 ,
當(dāng) 時(shí),,
所以 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為半圓的直徑,點(diǎn)是半圓弧上的兩點(diǎn), , .曲線經(jīng)過(guò)點(diǎn),且曲線上任意點(diǎn)滿足: 為定值.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與曲線交于不同的兩點(diǎn),求面積最大時(shí)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷(xiāo)售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷(xiāo)售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為(萬(wàn)元),其中固定成本為萬(wàn)元,并且每生產(chǎn)百臺(tái)的生產(chǎn)成本為萬(wàn)元(總成本固定成本生產(chǎn)成本).銷(xiāo)售收入(萬(wàn)元)滿足,假定該產(chǎn)品產(chǎn)銷(xiāo)平衡(即生產(chǎn)的產(chǎn)品都能賣(mài)掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:
(1)寫(xiě)出利潤(rùn)函數(shù)的解析式(利潤(rùn)銷(xiāo)售收入總成本);
(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A. 命題“”,則:“”
B. 命題“若,則”的否命題是真命題
C. 若為假命題,則為假命題
D. 若是的充分不必要條件,則是的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)為了提高小區(qū)內(nèi)人員的讀書(shū)興趣,特舉辦讀書(shū)活動(dòng),準(zhǔn)備進(jìn)一定量的書(shū)籍豐富小區(qū)圖書(shū)站,由于不同年齡段需要看不同類(lèi)型的書(shū)籍,為了合理配備資源,現(xiàn)對(duì)小區(qū)看書(shū)人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天40名讀書(shū)者進(jìn)行調(diào)查,將他們的年齡分成6段: , , , , , 后得到如圖所示的頻率分布直方圖,問(wèn):
(1)在40名讀書(shū)者中年齡分布在的人數(shù);
(2)估計(jì)40名讀書(shū)者年齡的平均數(shù)和中位數(shù);
(3)若從年齡在的讀書(shū)者中任取2名,求這兩名讀書(shū)者年齡在的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)若有兩個(gè)零點(diǎn),求的范圍;
(2)若有兩個(gè)極值點(diǎn),求的范圍;
(3)在(2)的條件下,若的兩個(gè)極值點(diǎn)為 ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù)),函數(shù),(為常數(shù),且).
(1)若函數(shù)有且只有1個(gè)零點(diǎn),求的取值的集合.
(2)當(dāng)(1)中的取最大值時(shí),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com