直線y=x+k與橢圓相交于不同兩點(diǎn),則實(shí)數(shù)k的取值范圍是______________。

答案:
解析:

k∈(-3,3)


提示:

y=x+k代入橢圓方程后得,化簡(jiǎn)后為:,因?yàn)橹本與橢圓有倆個(gè)不同交點(diǎn),所以△>0,解得k∈(-3,3)。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
m+1
+y2=1
的兩個(gè)焦點(diǎn)是F1(-c,0),F(xiàn)2(c,0)(c>0).
(1)設(shè)E是直線y=x+2與橢圓的一個(gè)公共點(diǎn),求使得|EF1|+|EF2|取最小值時(shí)橢圓的方程;
(2)已知N(0,-1)設(shè)斜率為k(k≠0)的直線l與條件(1)下的橢圓交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足
AQ
=
QB
,且
NQ
AB
=0
,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
左右兩焦點(diǎn)分別為F1,F(xiàn)2,且離心率e=
6
3

(1)設(shè)E是直線y=x+2與橢圓的一個(gè)交點(diǎn),求|EF1|+|EF2|取最小值時(shí)橢圓的方程;
(2)已知N(0,1),是否存在斜率為k的直線l與(1)中的橢圓交與不同的兩點(diǎn)A,B,使得點(diǎn)N在線段AB的垂直平分線上,若存在,求出直線l在y軸上截距的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:022

直線y=x+k與橢圓相交于不同兩點(diǎn),則實(shí)數(shù)k的取值范圍是______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

直線y=x+k與橢圓相交于不同兩點(diǎn),則實(shí)數(shù)k的取值范圍是______.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案